
Chapter 3

The Wave Function

On the basis of the assumption that the de Broglie relations give the frequency and wave-
length of some kind of wave to be associated with a particle, plus the assumption that
it makes sense to add together waves of different frequencies, it is possible to learn a
considerable amount about these waves without actually knowing beforehand what they
represent. But studying different examples does provide some insight into what the ul-
timate interpretation is, the so-called Born interpretation, which is that these waves are
‘probability waves’ in the sense that the amplitude squared of the waves gives the prob-
ability of observing (or detecting, or finding – a number of different terms are used) the
particle in some region in space. Hand-in-hand with this interpretation is the Heisenberg
uncertainty principle which, historically, preceded the formulation of the probability in-
terpretation. From this principle, it is possible to obtain a number of fundamental results
even before the full machinery of wave mechanics is in place.

In this Chapter, some of the consequences of de Broglie’s hypothesis of associating waves
with particles are explored, leading to the concept of the wave function, and its probability
interpretation.

3.1 The Harmonic Wave Function

On the basis of de Broglie’s hypothesis, there is associated with a particle of energy E and
momentum p, a wave of frequency f and wavelength λ given by the de Broglie relations
Eq. (2.9). It more usual to work in terms of the angular frequency ω = 2π f and wave
number k = 2π/λ so that the de Broglie relations become

ω = E/! k = p/!. (3.1)

With this in mind, and making use of what we already know about what the mathematical
form is for a wave, we are in a position to make a reasonable guess at a mathematical
expression for the wave associated with the particle. The possibilities include (in one
dimension)

Ψ(x, t) = A sin(kx − ωt), A cos(kx − ωt), Aei(kx−ωt), . . . (3.2)

At this stage, we have no idea what the quantity Ψ(x, t) represents physically. It is given
the name the wave function, and in this particular case we will use the term harmonic
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wave function to describe any trigonometric wave function of the kind listed above. As
we will see later, in general it can take much more complicated forms than a simple single
frequency wave, and is almost always a complex valued function.

In order to understand what information may be contained in the wave function, which
will lead us toward gaining a physical understanding of what it might represent, we will
turn things around briefly and look at what we can learn about the properties of a particle
if we know what its wave function is.

First, given that the wave has frequency ω and wave number k, then it is straightforward
to calculate the phase velocity vp of the wave:

vp =
ω

k
=

!ω
!k =

E
p
=

1
2mv

2

mv
= 1

2v. (3.3)

Thus, given the frequency and wave number of a wave function, we can determine the
speed of the particle from the phase velocity of its wave function, v = 2vp. We could
also try to learn from the wave function the position of the particle. However, the wave
function above tells us nothing about where the particle is to be found in space. We
can make this statement because this wave function is the same everywhere i.e. there is
nothing whatsoever to distinguish Ψ at one point in space from any other, see Fig. (3.1).

Ψ(x, t)

x

Figure 3.1: A wave function of constant amplitude and wavelength. The wave is the same ev-
erywhere and so there is no distinguishing feature that could indicate one possible position of the
particle from any other.

Thus, this particular wave function gives no information on the whereabouts of the particle
with which it is associated. So from a harmonic wave function it is possible to learn how
fast a particle is moving, but not what the position is of the particle.

3.2 Wave Packets

From what was said above, a wave function constant throughout all space cannot give
information on the position of the particle which suggests that a wave function that did
not have the same amplitude throughout all space might be a candidate for a giving such
information. In fact, since what we mean by a particle is a physical object that is confined
to a highly localized region in space, ideally a point, it would be intuitively appealing to
be able to devise a wave function that is zero or nearly so everywhere in space except for
one localized region. It is in fact possible to construct, from the harmonic wave functions,
a wave function which has this property. To show how this is done, we first consider what
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happens if we combine together two harmonic waves of very close frequency. The result
is well-known: a ‘beat note’ is produced, i.e. periodically in space the waves add together
in phase to produce a local maximum, while midway in between the waves will be totally
out of phase and hence will destructively interfere. Each localized maximum is known
as a wave packet, so what is produced is a series of wave packets. Now suppose we add
together a large number of harmonic waves with wave numbers k1, k2, k3, . . . all lying in
the range:

k − ∆k < kn < k + ∆k (3.4)

around a mean value k, i.e.

Ψ(x, t) =A(k1) cos(k1x − ω1t) + A(k2) cos(k2x − ω2t) + . . .

=
∑

n

A(kn) cos(knx − ωnt) (3.5)

where A(k) is a function peaked about the mean value k with a full width at half maximum
of 2∆k. (There is no significance to be attached to the use of cos functions here – the idea
is simply to illustrate a point. We could equally well have used a sin function or indeed
a complex exponential.) What is found is that in the limit in which the sum becomes an
integral:

Ψ(x, t) =
∫ +∞

−∞
A(k) cos(kx − ωt) dk (3.6)

all the waves interfere constructively to produce only a single beat note (in effect, the
‘beat notes’ or wave packets are infinitely far apart). In other words, the wave function
so constructed is found to have essentially zero amplitude everywhere except for a single
localized region in space, over a region of width 2∆x, i.e. the wave function Ψ(x, t) in this
case takes the form of a single wave packet, see Fig. (3.2).
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Figure 3.2: (a) The distribution of wave numbers k of harmonic waves contributing to the wave
function Ψ(x, t). This distribution is peaked about k with a width of 2∆k. (b) The wave packet
Ψ(x, t) of width 2∆x resulting from the addition of the waves with distribution A(k). The oscillatory
part of the wave packet (the ‘carrier wave’) has wave number k.

This wave packet is clearly particle-like in that its region of significant magnitude is con-
fined to a localized region in space. Moreover, this wave packet is constructed out of a
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group of waves with an average wave number k, and so these waves could be associated in
some sense with a particle of momentum p = !k. If this were true, then the wave packet
would be expected to move with a velocity of p/m. This is in fact found to be the case, as
the following calculation shows.

Because a wave packet is made up of individual waves which themselves are moving,
though not with the same speed, the wave packet itself will move (and spread as well).
The speed with which the wave packet moves is given by its group velocity vg:

vg =
(dω
dk
)
k=k
. (3.7)

This is the speed of the maximum of the wave packet i.e. it is the speed of the point
on the wave packet where all the waves are in phase. Calculating the group velocity
requires determining the relationship between ω to k, known as a dispersion relation.
This dispersion relation is obtained from

E = 1
2mv

2 =
p2

2m
. (3.8)

Substituting in the de Broglie relations Eq. (2.9) gives

!ω = !2k2
2m

(3.9)

from which follows the dispersion relation

ω =
!k2
2m
. (3.10)

The group velocity of the wave packet is then

vg =
(dω
dk
)
k=k
=

!k
m
. (3.11)

Substituting p = !k, this becomes vg = p/m. i.e. the packet is indeed moving with the
velocity of a particle of momentum p, as suspected. This is a result of some significance,
i.e. we have constructed a wave function of the form of a wave packet which is particle-
like in nature. But unfortunately this is done at a cost. We had to combine together
harmonic wave functions cos(kx − ωt) with a range of k values 2∆k to produce a wave
packet which has a spread in space of size 2∆x. The two ranges of k and x are not
unrelated – their connection is embodied in an important result known as the Heisenberg
Uncertainty Principle.

3.3 The Heisenberg Uncertainty Principle

The wave packet constructed in the previous section obviously has properties that are
reminiscent of a particle, but it is not entirely particle-like – the wave function is non-
zero over a region in space of size 2∆x. In the absence of any better way of relating
the wave function to the position of the atom, it is intuitively appealing to suppose that
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where Ψ(x, t) has its greatest amplitude is where the particle is most likely to be found,
i.e the particle is to be found somewhere in a region of size 2∆x. More than that, however,
we have seen that to construct this wavepacket, harmonic waves having k values in the
range (k − ∆k, k + ∆x) were adding together. These ranges ∆x and ∆k are related by the
bandwidth theorem, which applies when adding together harmonic waves, which tell us
that

∆x∆k >∼ 1. (3.12)

Using p = !k, we have ∆p = !∆k so that

∆x∆p >∼ !. (3.13)

[A more rigorous derivation, based on a more precise definition of ∆x and ∆k leads to

∆x∆p ≥ 1
2! (3.14)

though we will mostly use the result Eq. (3.13).] A closer look at this result is warranted.
A wave packet that has a significant amplitude within a range 2∆x was constructed from
harmonic wave functions which represent a range of momenta p − ∆p to p + ∆p. We
can say then say that the particle is likely to be found somewhere in the region 2∆x, and
given that wave functions representing a range of possible momenta were used to form
this wave packet, we could also say that the momentum of the particle will have a value
in the range p − ∆p to p + ∆p. The quantities ∆x and ∆p are known as uncertainties
for reasons that will become increasingly apparent, and the relation above Eq. (3.14) is
known as the Heisenberg uncertainty relation for position and momentum. It tells us that
we cannot determine, from knowledge of the wave function alone, the exact position and
momentum of a particle at the same time. In the extreme case that ∆x = 0, then the
position uncertainty is zero, but Eq. (3.14) tells us that the uncertainty on the momentum
is infinite, i.e. the momentum is entirely unknown. A similar statement applies if ∆p = 0.

This conclusion flies in the face of our experience in the macroscopic world, namely that
there is no problem, in principle, with knowing the position and momentum of a particle.
Thus, we could then argue that our wave function idea is all very interesting, but that it is
incomplete, that there is information missing. It is tempting to think that perhaps there is
a prescription still to be found that will enable us to find the position and the momentum
of the particle from the wave function, which amounts to saying that the wave function
by itself does not give complete information on the state of the particle. Einstein fought
vigorously for this position in a famous series of exchanges with Neils Bohr and oth-
ers, i.e. that the wave function was not a complete description of ‘reality’, and that there
was somewhere, in some sense, a repository of missing information that will remove the
incompleteness of the wave function – so-called ‘hidden variables’. Unfortunately (for
those who hold to his point of view) evidence has mounted, particularly in the past few
decades, that the wave function (or its analogues in the more general formulation of quan-
tum mechanics) does indeed represent the full picture – the most that can ever be known
about a particle (or more generally any system) is what can be learned from its wave
function. This means that the difficulty encountered above concerning not being able, in
general, to pinpoint either the position or the momentum of a particle from knowledge
of its wave function is not a reflection of any inadequacy on the part of experimentalists
trying to measure these quantities, but is an irreducible property of the natural world. It is
only at the macroscopic level where the uncertainties mentioned above become so small
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as to be experimentally unmeasurable that the effects of the uncertainty principle have no
apparent effect.

The limitations implied by the uncertainty relation as compared to classical physics may
give the impression that something has been lost, that the uncertainty principle is some
sort of roadblock to obtaining complete information about a system. It is true that it seems
that there is information about the physical world that is hidden from us, 1 at least on the
basis of our classical physics expectations, which may then be seen as a cause for concern
because of its implications that we cannot, even in principle, make exact predictions about
the behaviour of any physical system. However, the view can be taken that the opposite
is true, that the uncertainty principle is an indicator of greater freedom. In a sense, the
uncertainty principle now makes it possible for a physical system to have a much broader
range of possible physical properties consistent with the smaller amount of information
that is available about its properties. This leads to a greater richness in the properties of
the physical world than could ever be found within classical physics.

3.3.1 The Size of an Atom

One important application of the uncertainty relation is to do with determining the size
of atoms. Recall that classically atoms should not exist: the electrons must spiral into
the nucleus, radiating away their excess energy as they do. However, if this were the
case, then the situation would be arrived at in which the position and the momentum of
the electrons would be known: stationary, and at the position of the nucleus. This is in
conflict with the uncertainty principle, so it must be the case that the electron can spiral
inward no further than an amount that is consistent with the uncertainty principle.

To see what the uncertainty principle does tell us about the behaviour of the electrons in
an atom, consider as the simplest example a hydrogen atom. Here the electron is trapped
in the Coulomb potential well due to the positive nucleus. We can then argue that if the
electron cannot have a precisely defined position, then we can at least suppose that it is
confined to a spherical (by symmetry) shell of radius a. Thus, the uncertainty ∆x in x
will be a, and similarly for the y and z positions. But, with the electron moving within
this region, the x component of momentum, px, will, also by symmetry, swing between
two equal and opposite values, p and −p say, and hence px will have an uncertainty of
∆px ≈ 2p. By appealing to symmetry once again, the y and z components of momentum
can be seen to have the same uncertainty.

By the uncertainty principle ∆px∆x ≈ !, (and similarly for the other two components),
the uncertainty in the x component of momentum will then be ∆px ≈ !/a, and hence
p ≈ !/a. The kinetic energy of the particle will then be

T =
p2

2m
≈ !2
2ma2

(3.15)

so including the Coulomb potential energy, the total energy of the particle will be

E ≈ !2
2ma2

− e2

4πε0a
. (3.16)

1Or more alarming, the information may not even be there in the first place!
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The lowest possible energy of the atom is then obtained by simple differential calculus.
Thus, taking the derivative of E with respect to a and equating this to zero and solving for
a gives

a ≈ 4πε0!
2

me2
≈ 0.5 nm (3.17)

and the minimum energy

Emin ≈ − 1
2

me4

(4πε0)2!2
(3.18)

≈ − 13.6 eV. (3.19)

The above values for atomic size and atomic energies are what are observed in practice.
The uncertainty relation has yielded considerable information on atomic structure without
knowing all that much about what a wave function is supposed to represent! The exactness
of the above result is somewhat fortuitous, but the principle is nevertheless correct: the
uncertainty principle demands that there be a minimum size to an atom. If a hydrogen
atom has an energy above this minimum, it is free to radiate away energy by emission
of electromagnetic energy (light) until it reaches this minimum. Beyond that, it cannot
radiate any more energy. Classical EM theory says that it should, but it does not. The
conclusion is that there must also be something amiss with classical EM theory, which in
fact turns out to be the case: the EM field too must treated quantum mechanically. When
this is done, there is consistency between the demands of quantum EM theory and the
quantum structure of atoms – an atom in its lowest energy level (the ground state) cannot,
in fact, radiate – the ground state of an atom is stable.

Another important situation for which the uncertainty principle gives a surprising amount
of information is that of the harmonic oscillator.

3.3.2 The Minimum Energy of a Simple Harmonic Oscillator

By using Heisenberg’s uncertainty principle in the form ∆x∆p ≈ !, it is also possible to
estimate the lowest possible energy level (ground state) of a simple harmonic oscillator.
The simple harmonic oscillator potential is given by

U =
1
2
mω2x2 (3.20)

where m is the mass of the oscillator and ω is its natural frequency of oscillation. This
is a particularly important example as the simple harmonic oscillator potential is found
to arise in a wide variety of circumstaces such as an electron trapped in a well between
two nuclei, or the oscillations of a linear molecule, or indeed in a manner far removed
from the image of an oscillator as a mechanical object, the lowest energy of a single mode
quantum mechanical electromagnetic field.

We start by assuming that in the lowest energy level, the oscillations of the particle have
an amplitude of a, so that the oscillations swing between −a and a. We further assume
that the momentum of the particle can vary between p and −p. Consequently, we can
assign an uncertainty ∆x = a in the position of the particle, and an uncertainty ∆p = p in
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the momentum of the particle. These two uncertainties will be related by the uncertainty
relation

∆x∆p ≈ ! (3.21)

from which we conclude that
p ≈ !/a. (3.22)

The total energy of the oscillator is

E =
p2

2m
+ 1
2mω

2x2 (3.23)

so that roughly, if a is the amplitude of the oscillation, and p ≈ !/a is the maximum
momentum of the particle then

E ≈ 1
2

(
1
2m

!2
a2
+ 1
2mω

2a2
)

(3.24)

where the extra factor of 1
2 is included to take account of the fact that the kinetic and

potential energy terms are each their maximum possible values.

The minimum value of E can be found using differential calculus i.e.

dE
da
= 1

2

(
− 1
m

!2
a3
+ mω2a

)
= 0. (3.25)

Solving for a gives
a2 =

!
mω
. (3.26)

Substituting this into the expression for E then gives for the minimum energy

Emin ≈ 1
2!ω. (3.27)

A more precise quantum mechanical calculation shows that this result is (fortuitously)
exactly correct, i.e. the ground state of the harmonic oscillator has a non-zero energy of
1
2!ω.

It was Heisenberg’s discovery of the uncertainty relation, and various other real and imag-
ined experiments that ultimately lead to a fundamental proposal (by Max Born) concern-
ing the physical meaning of the wave function. We shall arrive at this interpretation by
way of the famous two slit interference experiment.


