
Chapter 8

Vector Spaces in Quantum Mechanics

We have seen in the previous Chapter that there is a sense in which the state of a quantum
system can be thought of as being made up of other possible states. The aim here is to use
the example of the Stern-Gerlach experiment to develop this idea further, and to show that
the states of a quantum system can be represented by vectors in a complex vector space.
To begin, we review some of the basic ideas of vectors, using the example of vectors in
real two dimensional space.

8.1 Vectors in Two Dimensional Space

Below is a summary of the important properties of vectors in physical space based on their
interpretation as mathematical objects that have both magnitude and direction. Position,
velocity, force and so on are examples of such vectors. The intention is not to give a
complete discussion, but to highlight a number of important properties of such vectors that
have analogues in the case of quantum states, including the property that two vectors can
be combined to produce another vector, and that ‘how much’ of one vector is contained
in another can be measured via the inner product of two vectors.

8.1.1 Linear Combinations of Vectors – Vector Addition

Consider two non-collinear vectors v̂1 and v̂2, as illustrated in Fig. (8.1). Multiples of
these pair of vectors can be added together in the fashion illustrated in Fig. (8.1) to form
another vector. Conversely, any other vector v can be expressed in terms of v̂1 and v̂2
using appropriate values for the components a and b of v, i.e.

v = av̂1 + bv̂2. (8.1)

The right hand side of this equation is known as a linear combination of the vectors v̂1 and
v̂2. The particular points to take away from this is that combining vectors produces other
vectors, analogous to our observation above that combining states produces other states,
and that the components a and b are a measure of how much of v̂1 and v̂2 respectively go
towards making up the vector v.
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These vectors are real vectors in that the coefficients a and b are real numbers. We can
readily generalize the ideas above by allowing a and b to be complex numbers. This
makes it difficult to draw figures such as Fig. (8.1), but the idea can be still retained that
the absolute values |a| and |b| will then represent the extent to which v is made up of the
two vectors v1 and v2.
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Figure 8.1: Examples of vector addition. (a) Two arbitrary basis vectors v1 and v2 combining
to give v; (b) A pair of orthonormal basis vectors; (c) The vector v expressed as a linear
combination of the basis vectors û1 and û2: v = 2û1 + 1.5û2.

The two vectors v̂1 and v̂2 introduced above are arbitrary except insofar as they are not
collinear. They are known as basis vectors in the sense that any vector can be written
as a linear combination of them. There is effectively an infinite number of choices for
the basis vectors, and in fact it is possible to choose three or more vectors to be basis
vectors. But the minimum number is two, if we wish to be able to describe any vector in
the plane as a linear combination of basis vectors. The collection of all the vectors that
can be constructed by taking linear combinations of these basis vectors using any complex
numbers a and b as components is known as a complex vector space, and since two basis
vectors are needed, the vector space is said to be of dimension two.

This vector space possess more structure than that implied by simply forming various
linear combinations. Vectors that can be drawn in a plane, as in Fig. (8.1), i.e. for which
the coefficients a and b are real, can be clearly seen to have different lengths and relative
orientations. These properties of vectors are encompassed in the definition of the inner,
scalar or dot product of pairs of vectors.

8.1.2 Inner or Scalar Products

The inner or scalar product of two real vectors v1 and v2 is defined by

v1 · v2 = v1v2 cos θ (8.2)

where v1 and v2 are the lengths of v1 and v2 respectively, and θ is the angle between them.
Using the idea of an inner or scalar product v1 · v2 it is possible to introduce a particularly
useful pair of basis vectors. To this end, consider two vectors û1 and û2 that satisfy

û1 · û1 = û2 · û2 = 1 (8.3)
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i.e. they have unit length, hence they are known as unit vectors, and

û1 · û2 = 0 (8.4)

i.e. they are orthogonal. This pair of vectors û1 and û2 is said to be orthonormal. As
before, they form a basis in that multiples of each vector can be added together in the
fashion illustrated in Fig. (8.1) to form another vector. Conversely, any vector v can be
expressed using appropriate values for the components of v, i.e.

v = aû1 + bû2. (8.5)

The components a and b, which represent ‘how much’ of the vector v is made up of the
vectors û1 and û2 are given by

a = û1 · v and b = û2 · v (8.6)

A well known example of a vector expressed as a linear combination of a pair of unit
vectors is given by the position vector r written with respect to the unit vectors î and ĵ:

r = xî + yĵ. (8.7)

Once again, if we allow for the possibility of complex vectors, then the definition of the
inner product is changed to allow for this. Thus the inner product of two vectors v1 and
v2 is now v∗1 · v2, and orthonormal vectors satisfy

u∗1 · u1 = u∗2 · u2 = 1
u∗1 · u2 = u∗2 · u1 = 0.

(8.8)

Complex basis vectors are not exotic mathematical entities. A simple example is

u1 =
3i + 4ij
5

u2 =
4i − 3ij
5

(8.9)

though it is true to say that they are not often encountered in mechanics, except at an ad-
vanced level, but are, as we shall see, routinely found in quantum mechanics. Because of
that, it is convenient to introduce a new notation for inner product (one that is commonly
used in pure mathematics) which is to write the inner product of two vectors v1 and v2 as
(v1, v2), so that we would have here

(v1, v2) = v∗1 · v2. (8.10)

The value of this notation is simply that it is more general and does not tie us to the geo-
metrical notion of inner product that we are used to using with position vectors, velocity
vectors and the like.

8.2 Spin Half Quantum States as Vectors

We now need to examine the way in which the quantum states for a spin half system can be
seen to fit in with the idea of being considered as vectors. To see how this comes about, we
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will show that there is a perfect analogy between Eqs. (7.43) and (7.44) and corresponding
relationships for ordinary (complex) vectors. Returning to the Stern-Gerlach example
discussed in the preceding Chapter we obtained there an expression Eq. (7.44)

|S 〉 = |+〉〈+|S 〉 + |−〉〈−|S 〉.

for the state of a spin half atom expressed in terms of the states |±〉, which are states
for which the atom has a z component of spin equal to ± 12!, and 〈±|S 〉 are probability
amplitudes (complex numbers) whose magnitude in some sense tells us ‘how much’ of
the states |±〉 are to be found in the state |S 〉. This result was obtained by ‘cancelling’ the
common factor ‘〈S ′|’ from the result

〈S ′|S 〉 = 〈S ′|+〉〈+|S 〉 + 〈S ′|−〉〈−|S 〉.

What we should bear in mind here is that we can recover this relationship between prob-
ability amplitudes by reintroducing ‘〈S ′|’ into Eq. (7.44) for any chosen final state, yield-
ing an expression for the probability amplitudes as needed. Thus, as has been said before,
Eq. (7.44) effectively represents a ‘template’ into which we insert the appropriate infor-
mation in order to recover the required probability amplitudes. We can also note that there
is nothing sacred about choosing to cancel the the common factor |S 〉 – we could equally
as well cancel the factor |S 〉, yielding

〈S ′| = 〈S ′|+〉〈+| + 〈S ′|−〉〈−|. (8.11)

Having carried out this cancellation procedure, what has reappeared is the state of a quan-
tum system i.e. |S 〉 which was introduced earlier in a different context, specifically as
being nothing more than a way of writing down all that we knew about the state of a
quantum system. There, the notation had no mathematical significance, but in the manner
in which it appears here, it seems to have acquired a mathematical meaning of some kind.
The aim is to see what this meaning might be, and in doing so, we will show that the
expression for |S 〉 has many of the properties that we associate with expressing a vector
as a sum of its components.

We begin by considering the probability amplitudes 〈S ′|S 〉 themselves. These are com-
plex numbers in general for arbitrary spin directions, (but they were real in the particular
Stern-Gerlach example used above), such that their modulus squared |〈S ′|S 〉|2 is the prob-
ability P(S ′|S ) of observing the spin to be in the state |S ′〉 given that it was in the state |S 〉.
In particular, 〈S |S 〉 is the probability amplitude of observing the spin to be in the state |S 〉
given that it was in the state |S 〉. This will have to be unity, i.e. P(S |S ) = |〈S |S 〉|2 = 1.
Thus we can conclude that

〈S |S 〉 = eiη (8.12)

where η is an arbitrary phase. It turns out that this phase always cancels out in any
calculation of observable quantities, so it is conventionally set to zero, and hence

〈S |S 〉 = 1. (8.13)

The state |S 〉 is said to be normalized to unity. As a particular case, this last result implies
that

〈+|+〉 = 1. (8.14)
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We can now consider the probability amplitude 〈+|S 〉 obtained by replacing S ′ by + in
the above expression for 〈S ′|S 〉:

〈+|S 〉 = 〈+|+〉〈+|S 〉 + 〈+|−〉〈−|S 〉. (8.15)

We have seen that we can put 〈+|+〉 = 1, so we have

〈+|−〉〈−|S 〉 = 0 (8.16)

which has to be true no matter what the state |S 〉 happens to be, i.e. no matter what value
the probability amplitude 〈−|S 〉 is. Thus we conclude that

〈+|−〉 = 0. (8.17)

Similarly we can show that

〈−|−〉 = 1 and 〈−|+〉 = 0. (8.18)

Thus we can set up a comparison:

〈+|+〉 = 1
〈+|−〉 = 0
〈−|−〉 = 1
〈−|+〉 = 0

←→
←→
←→
←→

û∗1 · û1 = 1
û∗2 · û1 = 0
û∗2 · û2 = 1
û∗2 · û1 = 0

(8.19)

where we have chosen to make the comparison between the probability amplitudes and the
inner product of complex unit vectors as we are dealing with probability amplitudes that
are, in eneral, complex numbers. This comparison implies the following correspondences:

|+〉 ←→ û1 |−〉 ←→ û2
〈+|←→ û∗1 〈−| ←→ û∗2.

(8.20)

We know that 〈+|S 〉 and 〈−|S 〉 are both just complex numbers, so call them a and b
respectively. If we now write

|S 〉 = a|+〉 + b|−〉 (8.21)

we establish a perfect correspondence with the expression

v = a û1 + b û2. (8.22)

On the basis of this result, we are then tempted to interpret the ket |S 〉 as a vector expressed
as a linear combination of two orthonormal basis vectors |±〉. We can push the analogy
further if we once again use the fact that 〈S |S 〉 = 1, so that

〈S |S 〉 = 1 = 〈S |−〉〈−|S 〉 + 〈S |+〉〈+|S 〉 (8.23)

On the other hand, the total probability of observing the system in either of the states |±〉
must add up to unity, which means that

P(+|S ) + P(−|S ) = |〈+|S 〉|2 + |〈−|S 〉|2 = 1. (8.24)

By comparing the last two equations, and noting that

|〈±|S 〉|2 = 〈±|S 〉〈±|S 〉∗ (8.25)
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we conclude that
〈±|S 〉 = 〈S |±〉∗. (8.26)

If we now consider
〈S ′| = 〈S ′|+〉〈+| + 〈S ′|−〉〈−|

and use the result, Eq. (8.26), 〈±|S ′〉 = 〈S ′|±〉∗, we can write this as

〈S ′| = 〈+|S ′〉∗〈+| + 〈−|S ′〉∗〈−| (8.27)

or, expressed in terms of a′ = 〈+|S ′〉 and b′ = 〈−|S ′〉, we have

〈S ′| = a′∗〈+| + b′∗〈−| (8.28)

which has a perfect correspondence with an ordinary vector v̂′ in the form

v′∗ = a′∗û∗1 + b′∗û∗2. (8.29)

So the bra 〈S ′| is itself a vector, a bra vector, which can be thought of as being just
the complex conjugate of the corresponding ket vector |S ′〉. But while it is occasionally
useful to think this way, it is not strictly true mathematically, and this way of viewing a bra
vector will not be employed here. Instead, as will be shown shortly, an interpretation of ket
vectors as column vectors leads to the interpretation of bra vectors as row vectors. A more
mathematical standpoint also leads to interpretation of bra vectors as ‘linear functionals’,
that is, a bra is a mathematical operator that acts on a ket vector to produce a complex
number.

Finally, to complete the correspondence, we note that the probability amplitude 〈S ′|S 〉
can be written

〈S ′|S 〉 = a′∗a + b′∗b (8.30)

which can be compared with the inner product v′∗·v, or written in the more formal notation:

(v′, v) = a′∗a + b′∗b (8.31)

which tells us that the probability amplitude can be considered as being simply the inner
product of the two vectors |S ′〉 and |S 〉, i.e.

〈S ′|S 〉 = (|S ′〉, |S 〉). (8.32)

In other words, we have a perfect analogy between the two dimensional complex vector
space formed by linear combinations of the unit vectors û1 and û2 discussed in Section
8.1 and a complex vector space consisting of all the linear combinations of the states |±〉.
The ket vectors |±〉 are referred to as basis states, analogous to û1 and û2 being referred
to as basis vectors.

Different spin states can be constructed by forming linear combinations |S 〉 = a|+〉 + b|−〉
of these basis states, with a and b being allowed to range over all the complex numbers,
though we have only been looking at linear combinations with real coefficients. By lim-
iting a and b to be real numbers, we are constructing states whose measured component
of spin all lie in the same plane, which, with the system of axes we have been using here,
is the XZ plane. If the coefficients a and b are complex, the state |S 〉 represents a state
in which the measured component S = S · n is along a direction n̂ that points out of this
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plane, though we will not attempt to prove this here (see Eq. (8.46)). So, any linear com-
bination in which a and b are any complex numbers also defines a possible spin state of
the spin half system. Thus all the possible linear combinations of |±〉, i.e. combinations
of the form a|+〉 + b|−〉 where a and b are complex numbers form a complex vector space
known as the state space of the system.

The quantum state vectors can also be ‘multiplied’ together – the inner product of the two
vectors |S ′〉 and |S 〉 is just the probability amplitude 〈S ′|S 〉. In particular, the basis states
are normalized to unity, i.e. they are unit vectors, and they are orthogonal to each other,
i.e. they form a pair of orthonormal basis states.

The terminology often adopted is to say that the state vector |S 〉 = a|+〉 + b|−〉 is a ‘linear
superposition’ of the two states |±〉. The probability amplitudes a = 〈+|S 〉 and b = 〈−|S 〉
represent ‘how much’ of the states |±〉 are contained within the state |S 〉 to the extent that
|〈±|S 〉|2 is the probability of the z component of spin being found to have the values ± 12!.
One difference between ordinary vectors and quantum state vectors is the importance of
the ‘normalization condition’, i.e. the requirement that 〈S |S 〉 = 1, which must hold true
given the interpretation of the inner product as a probability amplitude. But how can this
be reconciled with the statement above that any linear combination of the basis states is a
possible state of the system? How can a state vector such as |S̃ 〉 = |+〉+ |−〉 which has the
property

〈S̃ |S̃ 〉 = 2 (8.33)

be a physically acceptable state vector as it seems to be saying that the probability of
finding the system in the state |S̃ 〉 given that it is in the state |S̃ 〉 is 4, which does not make
sense. But, if we define a new vector |S 〉 by

|S 〉 = |S̃ 〉
√
〈S̃ |S̃ 〉

=
1√
2
|S̃ 〉 (8.34)

then automatically |S 〉 will have the required normalization property – it is said to be
normalized to unity. So, rather than abandoning giving a physical interpretation of state
vectors which are not normalized to unity, the approach adopted is that we can multiply
any state vector by any factor and say that it still represents the same physical state,
i.e. |S 〉 and |S̃ 〉 = a|S 〉, where a is any complex number, represent the same physical state.
However, it is only the normalized state |S 〉 that should be used in any calculations in
order to be certain that probability is properly accounted for.

This can be summarized in a table:
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Classical vector Quantum state vector for spin
half system

Basis Vectors û1, û2 |+〉, |−〉

Inner Product (v1, v2) = v∗1 · v2 (|S ′〉, |S 〉) = 〈S ′|S 〉

Orthonormality û∗1 · û1 = û∗2 · û2 = 1
û∗1 · û2 = û∗2 · û1 = 0

〈+|+〉 = 〈−|−〉 = 1
〈+|−〉 = 〈−|+〉 = 0

Linear
combination

v̂ = aû1 + bû2
a and b complex numbers

|S 〉 = a|+〉 + b|−〉
a and b complex numbers

Normalisation — 〈S |S 〉 = 1

A More Detailed Analysis One of the important properties of vectors is that two or
more of them can be combined as a ‘linear combination’ to produce a third. If we are to
consider quantum states as vectors, then this very basic property must also be possessed
by quantum states. In the above, we have not really shown that any linear combination of
the basis states |±〉, does indeed represent a possible state of the system, even if we restrict
ourselves to the case of the measuring spin components in the XZ plane. But a more
detailed argument than that just presented can be used to strengthen this conclusion. To
see how this comes about, we return to the above expression Eq. (7.18) for the probability
amplitude 〈S f =

1
2!|S i = 1

2!〉:

〈S f =
1
2!|S i = 1

2!〉 =〈S f =
1
2!|S I =

1
2!〉〈S I =

1
2!|S i = 1

2!〉
+ 〈S f =

1
2!|S I = − 12!〉〈S I = − 12!|S i = 1

2!〉.
(8.35)

We can ‘cancel’ 〈S f =
1
2!| from this expression and write

|S i = 1
2!〉 = |S I =

1
2!〉〈S I =

1
2!|S i = 1

2!〉 + |S I = − 12!〉〈S I = − 12!|S i = 1
2!〉 (8.36)

In Section 7.3, Eq. (7.33), the quantity 〈S f =
1
2!|S i = 1

2!〉 was shown to be given by

〈S f =
1
2!|S i = 1

2!〉 = cos[(θ f − θi)/2]

with the phase factor exp(iΦ) put equal to unity, and with n̂ and m̂, the directions of the
magnetic fields, confined to the XZ plane. The probability amplitudes for the system to
pass through the intermediate states |S I = ± 12!〉, that is, 〈S I = ± 12!|S i = 1

2!〉 are likewise
given by

〈S I =
1
2!|S i = 1

2!〉 = cos[12(θI − θi)]
〈S I = − 12!|S i = 1

2!〉 = cos[12(θI + π − θi)] = − sin[12(θI − θi)].
(8.37)

so that Eq. (8.36) becomes

|S i = 1
2!〉 = cos[12(θI − θi)]|S I = +

1
2!〉 − sin[12(θI − θi)]|S I = − 12!〉. (8.38)
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To further simplify things, we will assume that θI = 0, i.e. the l̂ vector is in the z direction.
In addition, we will make the notational simplification already used above defined by

|S i = 1
2!〉 →|S 〉

|S I = ± 12!〉 →|±〉
〈S I = ± 12!|S i = 1

2!〉 →〈±|S 〉

so that |±〉 = |S z = ± 12!〉, and Eq. (8.36) becomes

|S 〉 = |+〉〈+|S 〉 + |−〉〈−|S 〉. (8.39)

or, using Eq. (8.37)
|S 〉 = cos(12θi)|+〉 + sin(12θi)|−〉. (8.40)

We are now at the point at which we can begin to supply an interpretation to this equation.
What this equation is saying is that the combination cos(12θi)|+〉+sin(12θi)|−〉, and |S 〉, both
represent the same thing – the atomic spin is in a state for which S i = 1

2!. In other words,
if we were presented with the combination:

1√
2
|+〉 + 1√

2
|−〉 (8.41)

we immediately see that cos(12θi) = 1/
√
2 and sin(12θi) = 1/

√
2, and hence θi = 90◦. Thus

the magnetic field is pointing in the direction 90◦ to the z direction, i.e. in the x direction,
and hence the spin state of the atom is the state |S 〉 = |S x =

1
2!〉.

But what if we were presented with the combination 2|+〉 + 2|−〉? Here, we cannot find
any angle θi, so it appears that this combination is not a possible state of the atomic spin.
But we can write this as

2
√
2
[
1√
2
|+〉 + 1√

2
|−〉
]

(8.42)

which we can now understand as representing 2
√
2|S x =

1
2!〉. Is 2

√
2|S x =

1
2!〉 a different

physical state of the system to |S x =
1
2!〉? Well, it is our notation, so we can say what we

like, and what turns out to be preferable is to say that α|S 〉 describes the same physical
state as |S 〉, for any value of the constant α. Thus, we can say that 2|+〉+2|−〉 is also a state
of the system, namely 2

√
2|S x =

1
2!〉, which represents the same physical information

about the state of the system as |S x =
1
2!〉.

Thus any combination C+|+〉 + C−|−〉 where C± are real numbers will always represent
some state of the system, in general given by

√
C2+ +C2− |S i = 1

2!〉 (8.43)

where
S i = S · n̂ (8.44)

and where n̂ is a unit vector in the direction defined by the angle

θi = 2 tan−1
(
C−
C+

)
. (8.45)
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Conversely, given any state of the system, we can work out how to write it in the form
C+|+〉 + C−|−〉. Further, we can repeat the whole of the above discussion for any other
choice of the intermediate states |S I = ± 12!〉.
It is this last fact that a state |S 〉 can be written as the linear combination or linear superpo-
sition C+|+〉 + C−|−〉 of two other states, analogous to Eq. (8.1) for the arbitrary vector v,
and conversely that any linear superposition of states is itself another state is the essential
property that these states need to possess in order for them to be interpreted as vectors
belonging to some vector vector space, specifically here a real vector space.

φ

θ

n̂

X

Y

Z

Figure 8.2: Polar angles for defining direc-
tion of unit vector n̂

In the more general case of the magnetic fields
vectors not all being in the XZ plane, the prob-
ability amplitudes 〈±|S 〉 will be, in general,
complex numbers. For instance, it can be
shown that the state |S 〉 = |S n = 1

2!〉 where
S n = S · n̂, and where n̂ = sin θ cos φ î +
sin θ sin φ ĵ + cos θ k̂ is a unit vector oriented
in a direction defined by the spherical polar
angles θ, φ, is given by

|S 〉 = cos(12θ)|+〉 + eiφ sin(12θ)|−〉 (8.46)

Nevertheless, the arguments presented above
continue to apply. In particular any linear
combinationC−|−〉+C+|+〉, whereC± are com-
plex numbers, will be a possible spin state of an atom. But since the coefficients are
complex numbers, the vector space, or state space, is a complex vector space. This more
general case, is what is usually encountered in quantum mechanics and below, we will
assume that the probability amplitudes are, in general, complex.

8.3 The General Case of Many Intermediate States

The above results were based on the particular case of a spin half system which could
pass through two possible intermediate spin states, and was developed, at least in part,
by analogy with the two slit experiment where a particle could pass through two possible
intermediate states defined by the positions of the slits. Both these examples can be
readily generalized. For instance, we could consider an interference experiment in which
there are multiple slits in the first barrier. Clearly the arguments used in the two slit case
would apply again here, with the final result for the probability amplitude of observing an
electron striking the screen at position x after having set out from a source S being given
by

〈x|S 〉 =
N∑

n=1

〈x|n〉〈n|S 〉 (8.47)

where we have supposed that there are N slits in the first barrier, so that the electron can
pass through N intermediate states. Likewise, if we repeat the Stern-Gerlach experiment
with spin 1 atoms, we would find that the atoms would emerge in one or the other of three
beams corresponding to S z = −!, 0, !. More generally, if the atoms have spin s (where
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s = 0 or 12 or 1 or
3
2 , . . . then they will emerge in one of a total of 2s + 1 different possible

beams corresponding to S z = −s!, or (−s + 1)!, or . . . , or (s − 1)!, or s!. We can then
write

〈S ′|S 〉 =
s∑

n=−s
〈S ′|n〉〈n|S 〉 (8.48)

i.e. the atom can pass through 2s + 1 intermediate states, where we have written |n〉 for
the state in which the atom has a z component of spin S z = n! 1. What we want to do is
extract from these two examples a general prescription that we can apply to any system
in order to build up a quantum mechanical description of that system. In order to set the
scene for this development, we need to reconsider again the general features that apply to
the intermediate states appearing in the above two expressions. The important properties
of these intermediate states are as follows:

1. Each intermediate state represents a mutually exclusive possibility, that is, if the
system is observed to be in one of the intermediate states, it is definitely the case
that it will not also be observed in any of the others: the electron can be observed to
pass through one slit only, or a spin s atom would be seen to emerge from a Stern-
Gerlach apparatus in one beam only. It is this mutual exclusiveness that allows us
to write such things as 〈−|+〉 = 0 or 〈+|+〉 = 1 and so on.

2. The list of intermediate states covers all possibilities: if there are N slits in the
barrier, then there will be N intermediate states |n〉 – there are no other slits for the
electron to pass through. Likewise, if an atom with spin s enters a Stern-Gerlach
apparatus, it emerges in one of 2s + 1 possible beams. Thus the states |n〉, n =
−s,−s + 1, . . . , s − 1, s account for all the possible states that the atom can emerge
in.

3. Finally, the claim is made that the probability amplitude for finding the system in
the state 〈φ| given that it was in the state |ψ〉 can be written as

〈φ|ψ〉 =
∑

n

〈φ|n〉〈n|ψ〉 (8.49)

which allows us to write the arbitrary state |ψ〉 as

|ψ〉 =
∑

n

|n〉〈n|ψ〉 (8.50)

where 〈n|ψ〉, the probability amplitude of finding the system in the state |n〉, given
that it was in the state |ψ〉, is now viewed as a ‘weighting’ for the state |ψ〉 to be
observed in the state |n〉.

The above three properties of intermediate states shows us how to generalize the results
that were obtained for the two slit and spin half examples used to develop the ideas.
However, the ideas developed ought to be applicable to systems other than these two
possibilities. Thus, we need to extract out of what has been said so far ideas that can be

1Note, n is not necessarily an integer here. If s = 1
2 for instance, then n will have the two possible values

n = ± 12 , and the states | ± 1
2 〉 are just the states we have earlier called |±〉.
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applied to any physical system so as to generate a quantum description of such a system.
We do this by noting the singular role played in the above discussion of the ’intermediate
states’. If we can identify such intermediate states for any physical system, then we are in
a position to formulate a quantum description of such a system.

The characteristics of the intermediate states that are of greatest importance are the fol-
lowing:

1. They represent mutually exclusive alternatives, that is, if a measurement is made, a
system is observed in only one of these possible intermediate states;

2. The intermediate states cover all possibilities, that is, if a measurement is made, the
system is always observed to be in one of these intermediate states;

3. If the system is initially prepared in some initial state |ψ〉, then the probability am-
plitude of observing it in some arbitrary final state |φ〉 is given by a sum of proba-
bility amplitudes of passing through each of these intermediate states, in a manner
analogous to Eq. (8.48).

            

            −a +a

O− O

| − a〉

−a +a

O −O
| + a〉

Figure 8.3: O−2 ion with the two
possible positions of the electron, cor-
responding to the two states | ± a〉.

We will now see how these ideas can be applied to more
general kinds of physical systems. To begin, we have
to set up these intermediate states for a given system.
So suppose we perform an exhaustive series of mea-
surements of some observable property of the system
– call it Q. For example, we could determine through
which slits it is possible for an electron to pass in the
two slit experiment above, or the possible values of the
Z component of the spin of a particle, or the possible
values of the position of an electron on an O−2 ion, as in
the adjacent figure. We will give many more examples
later. Whatever the system, what we mean by exhaus-
tive is that we determine all the possible values that the
observed quantity Q might have. For instance, we de-
termine that, in the two slit interference experiment, the

electron can pass through, (that is, be observed to be at) the position of one or the other
of the two slits, or that a spin half particle would be observed to have either of the values
S z = ± 12!, and no other value. Or for the O−2 ion, the electron can be found either on the
atom at position x = −a or on the atom at position x = +a. In general, for an arbitrary
observable Q, let us represent these observed values by q1, q2, q3, . . . all of which will be
real numbers. Of course, there might be other observable properties of the system that we
might be able to measure, but for the present we will suppose that we only need concern
ourselves with just one.

In keeping with the way that we developed the idea of state earlier, we then say that as a
result of the measurement producing, for instance, the outcome q1, we then say that the
system ends up in the state |q1〉, and similarly for all the others possibilities. Moreover,
there is now the possibility, if the system is initially prepared in the initial state |ψ〉, of
observing it in any one of these states |qn〉, but once again, we are unable to predict with
certainty which of these states we will observe the system to be in – we can only assign
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a probability P(qn|ψ) of finding the system in the state |qn〉 given it was in the state |ψ〉.
Likewise, there will be a probability P(φ|qn) of finding the system in the final state |φ〉
given that it was in the state |qn〉. It is at this point that we reach the result that, in a sense,
defines quantum mechanics. If the possibility exists of finding the system in any of the
states |q1〉, |q2〉, . . . , then according to classical ideas of probability, we would be safe in
assuming the intuitive formula

P(φ|ψ) =
∑

n

P(φ|qn)P(qn|ψ) — a result of classical probability theory

i.e. the system starts in the state |ψ〉, and has the probability P(qn|ψ) that it will end up
in the state |qn〉, and once it ‘arrives there’ we then have the probability P(φ|qn) that it
will then end up in the state |φ〉 given that it was in the state |qn〉. Multiplying these
two probabilities will then give the probability of the system starting from |ψ〉 and passing
through |qn〉 on its way to the final state |φ〉. We then sum over all the possible intermediate
states |qn〉 to give the total probability of arriving in the state |φ〉. However, what is found
experimentally is that if the system is never observed in any of the intermediate states |qn〉,
this probability is not given by this classical result – the measurements show evidence of
interference effects, which can only be understood if this probability is given as the square
of a ‘probability amplitude’.

Thus, we find we must write P(φ|ψ) = |〈φ|ψ〉|2, where 〈φ|ψ〉 is a complex number, gener-
ally referred to as the probability amplitude of finding the system in state |φ〉 given that it
was in state |ψ〉, and this probability amplitude is then given by

〈φ|ψ〉 =
∑

n

〈φ|qn〉〈qn|ψ〉 (8.51)

where the sum is over the probability amplitudes of the system passing through all the
possible states associated with all the possible observed values of the quantity Q.

If we square this result we find that

P(φ|ψ) = |〈φ|ψ〉|2 =
∑

n

|〈φ|qn〉|2|〈qn|ψ〉|2 + cross terms

=
∑

n

P(φ|qn)P(qn|ψ) + cross terms. (8.52)

We note that this expression consists, in part, of the classical result Eqn. (8.3), but there is,
in addition, cross terms. It is these terms that are responsible for the interference effects
observed in the two slit experiment, or in the Stern-Gerlach experiment. If we observe
which state |qn〉 the system ‘passes through’ it is always found that these interference
terms are washed out, reducing the result to the classical result Eqn. (8.3). This we have
seen in the case of two slit interference wherein if the slit through which the particle
passes is observed, then the interference pattern on the observation screen is washed out.

What remains to be found is ways to calculate these ‘probability amplitudes’. We can go
a long way towards doing this by recognizing, from a purely physical perspective, that the
probability amplitudes 〈qm|qn〉 must have the following properties:

• 〈qm|qn〉 = 0 if m ! n. This amounts to stating that if the system is in the state
|qn〉, i.e. wherein the observable Q is known to have the value qn, then there is zero
possibility of finding it in the state |qm〉.
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• 〈qn|qn〉 = 1. This asserts that if the system is in the state for which the quantity Q
has the value qn, then it is certain to be found in the state in which it has the value
qn. Thus the states {|qn〉; n = 1, 2, . . .} are mutually exclusive.
• The states {|qn〉; n = 1, 2, . . .} are also exhaustive in that they cover all the possible
values that could be observed of the observable Q. These states are said to be
complete – simply because they cover all possibilities – and the result Eqn. (8.51)
as the ‘closure relation’ for these states.

Then we propose the following set of ideas and concepts:

1. 〈φ|ψ〉 = the probability amplitude of the system being found in the state |φ〉
given that it was in state |ψ〉.

2. |〈φ|ψ〉|2 = the probability of the system being found in the state |φ〉 given that
it was in state |ψ〉.

3. The states {|qn〉; n = 1, 2, . . . } are mutually exclusive i.e.
〈qm|qn〉 = δmn = 1 n = m

= 0 n ! m (8.53)

where δmn is known as the Kronecker delta. The states {|qn〉; n = 1, 2, . . . } are said
to be orthonormal.
This condition satisfied by these states is a mathematical expression of the physical
fact that if the system is in one of the states |qn〉, then there is no possibility of
finding it in some other state |qm〉, m ! n, hence 〈qm|qn〉 = 0 while the probability
of finding it in the state |qn〉 must be unity.

4. The fundamental law of quantum mechanics, otherwise known as the closure rela-
tion:

〈φ|ψ〉 =
∑

n

〈φ|qn〉〈qn|ψ〉 (8.54)

tells us that the total probability amplitude of finding the system in the final state
|φ〉 is just the sum of the probability amplitudes of the system ‘passing through’ any
of the states {|qn〉; n = 1, 2, . . . }. This is the ‘sum over paths’ idea alluded to above.

It is at this point that we perform the ‘cancellation’ trick which results in the states be-
ing expressed in terms of other states as in the following, which ultimately leads us to
interpreting these states as vectors.

5. The completeness relations:

|ψ〉 =
∑

n

|qn〉〈qn|ψ〉 (8.55)

〈φ| =
∑

n

〈φ|qn〉〈qn| (8.56)

which tells us that either the initial or final states can be expressed as a linear com-
bination of the intermediate states {|qn〉; n = 1, 2, . . . }. This is a statement that these
states are complete in that there is enough of them such that any state of the system
can be written in the above form in terms of these states.
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6. 〈φ|ψ〉 = 〈ψ|φ〉∗.

7. The normalization condition:

〈ψ|ψ〉 =
∑

n

〈ψ|qn〉〈n|ψ〉 =
∑

n

|〈qn|ψ〉|2 = 1. (8.57)

This last result tells us that the probability of finding the system in any of the states |n〉 adds
up to unity. Moreover, we know that 〈qm|qn〉 = 0 if n ! m so that a system in state |qn〉 can
never be found in some other state |qm〉. Consequently, the set of states {|qn〉; n = 1, 2, . . . }
represent a complete set of possible alternative final states, complete in the sense that the
total probability of ending up in any of the mutually exclusive possible final states |qn〉
adds up to unity – there is nowhere else for the system to be found.

By a simple extension of the arguments presented in Section 8.2 in the case of spin half
quantum states it is now possible to show how the above properties 1 – 7 are completely
analogous to the properties of vectors in a complex vector space. This mathematical for-
malism will be developed more fully in Section 8.5, but for the present we can summarize
the essential ideas based on what we have already put forward earlier. The importnat
points then are as follows:

1. The collection of all the possible state vectors of a quantum system forms a complex
vector space known as the state space of the system.

2. The probability amplitudes are identified as the inner product of these state vectors.

3. The intermediate states {|qn〉; n = 1, 2, . . . } form a complete orthonormal set of
basis states of this state space, i.e. any state vector |ψ〉 can be written as a linear
combination of these basis states.

4. The number of basis states is known as the dimension of the state space.

8.4 Constructing a State Space

The ideas developed above can now be applied to constructing a state space for a physical
system. The basic idea is as discussed in Section 8.3 which enables us to define a set of
basis states for the state space of the system. By establishing a set of basis states, in a
sense, we ‘bring the state space into existence’, and once this is done, we are free to use
all the mathematical machinery available for analysing the properties of the state space so
constructed. The question can be asked as to whether or not the ideas presented in Section
8.3, admittedly extracted from only a handful of examples, can be applied with success
to any other system. This is a question that can only be answered by applying the rules
formulated there and considering the consequences. In Section 8.7 we will discuss where
these ideas, if naively applied, fail to work. Otherwise, these ideas, when fully formed,
constitute the basis of quantum physics.

In accordance with the ideas developed in Section 8.3, constructing a state space for a
physical system can be carried out by recognizing the intermediate states through which
a system can pass as it makes its way from some initial state to some observed final state,
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as was done in the case of the two slit, or spin half systems. Thus, in the two slit example,
the two possible intermediate states are those for which the particle is to be found at the
position of either of the two slits. In the spin half example, the two intermediate states are
those in which the spin is observed to have either of the two values S z = ± 12!; these are
the states we have been calling |±〉. These intermediate states are states of the system that
can be identified through an argument based on the idea that some physical property of
the system can be exhaustively measured to yield a set of values that we then use to label
a complete set of basis states for the state space of the system.

Negatively Charged Ions Here the system is a molecule which has acquired an extra
electron, which can be assumed to found only on any one of the atoms making up the
molecule. This is, of course, an approximation. The electron could be found anywhere
around the atoms, or in the space between the atoms, in a way that depends on the nature
of the chemical bond between the atoms. Here we are making use of a coarse notion of
position, i.e. we are assuming that the electron can be observed to reside on one atom or
the other, and we do not really care about exactly where on each atom the electron might
be found. The idea is best illustrated by the simple example of the O−2 ion in which the
electron can be found on one or the other of the oxygen atoms (see Fig. (8.3)). If we let
x = ±a be the positions of the two atomic nuclei with respect to a point midway between
them, then we can use these two possible positions of the electron to label the possible
states of the system. The two states are then | − a〉 and | + a〉. If the electron is observed
to be on the oxygen atom at x = +a, then it has unit probability of being observed on the
atom at x = +a, but zero probability of being observed on the atom at x = −a. These
two states represent mutually exclusive possibilities, and so they are distinct orthonormal
states:

〈+a| + a〉 = 〈−a| − a〉 = 1
〈+a| − a〉 = 〈−a| + a〉 = 0 (8.58)

These two states are also complete in that, within the limits of our model, there is nowhere
else for the electron to be found – it is either on the atom at x = +a or on the atom at
x = −a. These two states form a complete set of orthonormal basis states for the state
space of the ion, so that any state of the ion can be expressed in the form

|ψ〉 = c1| + a〉 + c2| − a〉 (8.59)

where c1, c2 are complex numbers – this is just the completeness relation for this system.
Likewise, any linear combination of {| + a〉, | − a〉} will represent a possible state of the
ion. As there are two basis states, the state space for the system has dimension 2.

This kind of model can be generalized to situations involving different geometries, such
as atoms arranged in a ring e.g. an ozone ion O−3 . In this case, the state space will be
spanned by three basis states corresponding to the three possible positions at which the
electron can be observed. This model (and its generalizations to an arbitrary number of
atoms arranged in a ring) is valuable as it gives rise to results that serve as an approximate
treatment of angular momentum in quantum mechanics.
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Ammonia molecule Here the system is
the ammonia molecule NH3 in which the
nitrogen atom is at the apex of a trian-
gular pyramid with the three hydrogen
atoms forming an equilateral triangle as
the base. The nitrogen atom can be po-
sitioned either above or below the plane
of the hydrogen atoms, these two pos-
sibilities we take as two possible states
of the ammonia molecule. (The N atom
can move between these two positions by
‘quantum ‘tunnelling’ through the poten-
tial barrier lying in the plane of the hy-
drogen atoms.) Once again, this is a state
space of dimension 2.
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Figure 8.4: Ammonia molecule in two states
distingusished by the position of the nitrogen
atom, either above or below the plane of the hy-
drogen atoms, corresponding to the states | + l〉
and | − l〉 respectively.

Spin Flipping In this case, we have a spin half particle (for instance) in a constant
magnetic field, so the two possible states are the familiar spin up or spin down states. If,
in addition, we add a rotating magnetic field at right angles to the constant field, there
arises a time dependent probability of the spin flipping from one orientation to the other.
As the spin up and spin down states are of different energies, this represents a change in
energy of the particle, a change that can be detected, and is the basis of the electron spin
and nuclear magnetic resonance imaging much used in medical work. Obviously this is a
state space of dimension two.

The Qubit Any two state system can be used to represent the quantum version of a
binary numbers: spin up and spin down, an atom excited or not, and so on. Overall the
two states can be represented by |0〉 and |1〉, corresponding to the two binary numbers 0
and 1. A linear combination

|ψ〉 = c0|0〉 + c1|1〉.
can be formed which represents the possibility of a memory registering a bit of informa-
tion, not as either a 0 or a 1, which is all that can happen classically, but simultaneously,
registering both possibilities of 0 or 1. Such a state is known as a qubit. Obviously, the
state space is of dimension two, and much that we have said above about spin half systems
applies. Quantum computation then involves manipulating the whole state |ψ〉, which, in
effect, amounts to performing two calculations at once, differing by the initial setting of
the memory bit. The idea introduced above can be readily extended. Thus, if we have
two two level atoms, we have such possibilities as |00〉, |01〉, |10〉, and |11〉 where, for
instance, |10〉 is the state in which the first atom is in its excited state and the second is
in its ground state. Obviously, the state |00〉 represents the number zero, |01〉 the number
one, |10〉 the number two, and |11〉 the number three. We now have two qubits, and a state
space of dimension four, and we can set up linear combinations such as

|ψ〉 = c00|00〉 + c01|01〉 + c10|10〉 + c11|11〉 (8.60)

and we can then perform calculations making use, simultaneously, of four different possi-
ble values for whatever quantity the states are intended to represent. With three atoms, or
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four and so on, the state space becomes much larger: of dimension 2N in fact where N is
the number of qubits, and the basis states represent the numbers ranging from 0 to 2N − 1
in binary notation.

Benzene Molecule An example of
quite a different character is that of the
benzene molecule, illustrated in Fig.
8.5. The two states of the molecule are
distinguished by the positioning of the
double bonds between pairs of carbon
atoms. The molecule, at least with regard
to the arrangements of double bonds can
be found in two different states which,
for want of a better name, we will call |α〉
and |β〉. The state space is therefore of
dimension 2, and an arbitrary state of the
molecule would be given by

|ψ〉 = a|α〉 + b|β〉. (8.61)

|α〉

|β〉

Figure 8.5: Two arrangements of the
double bonds in a benzene moelcule cor-
responding to two states |α〉 and |β〉.

All the examples given above yield state spaces of finite dimension. Much the same
argument can be applied to construct state spaces of infinite dimension. A couple of
examples follow.

The Tight-Binding Model of a Crystalline Metal The examples given above of an
electron being positioned on one of a (finite) number of atoms can be readily generalized
to a situation in which there are an infinite number of such atoms. This is not a contrived
model in any sense, as it is a good first approximation to modelling the properties of the
conduction electrons in a crystalline solid. In the free electron model of a conducting
solid, the conduction electrons are assumed to be able to move freely (and without mu-
tual interaction) through the crystal, i.e. the effects of the background positive potentials
of the positive ions left is ignored. A further development of this model is to take into
account the fact that the electrons will experience some attraction to the periodically po-
sitioned positive ions, and so there will be a tendency for the electrons to be found in the
neighbourhood of these ions. The resultant model – with the basis states consisting of
a conduction electron being found on any one of the ion sites – is obviously similar to
the one above for the molecular ion. Here however, the number of basis states is infinite
(for an infinite crystal), so the state space is of infinite dimension. Representing the set
of basis states by {|n〉, n = 0,±1,±2, . . . } where na is the position of the nth atom, and a
is the separation between neighbouring atoms, then any state of the system can then be
written as

|ψ〉 =
+∞∑

n=−∞
cn|n〉. (8.62)

By taking into account the fact that the electrons can make their way from an ion to one
of its neighbours, much of the band structure of semiconducting solids can be obtained.
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Free Particle We can generalize the preceding model by supposing that the spacing
between the neighbouring atoms is allowed to go to zero, so that the positions at which
the electron can be found become continuous. This then acts as a model for the description
of a particle free to move anywhere in one dimension. In setting up this model, we find
that as well as there being an infinite number of basis states – something we have already
encountered – we see that these basis states are not discrete, i.e. a particle at position x
will be in the basis state |x〉, and as x can vary continuously over the range −∞ < x < ∞,
there will be a non-denumerably infinite, that is, a continuous range of such basis states.
As a consequence, the completeness relation ought to be written as an integral:

|ψ〉 =
∫ +∞

−∞
|x〉〈x|ψ〉 dx. (8.63)

The states |x〉 and |x′〉 will be orthonormal if x ! x′, but in order to be able to retain the
completeness relation in the form of an integral, it turns out that these basis states have to
have an infinite norm. However, there is a sense in which we can continue to work with
such states, as will be discussed in Section 8.6.

Particle in an Infinitely Deep Potential Well We saw in Section 5.3 that a particle
of mass m in an infinitely deep potential well of width L can have the energies En =
n2π2!2/2mL2 where n is a positive integer. This suggests that the basis states of the
particle in the well be the states |n〉 such that if the particle is in state |n〉, then it has
energy En. The probability amplitude of finding the particle at position x when in state |n〉
is then 〈x|n〉 which, from Section 5.3 we can identify with the wave function ψn, i.e.

ψn(x) = 〈x|n〉 =
√
2
L
sin(nπx/L) 0 < x < L

= 0 x < 0, x > L. (8.64)

The state space is obviously of infinite dimension.

It has been pointed out before that a state space can have any number of sets of basis
states, i.e. the states |n〉 introduced here do not form the sole possible set of basis states
for the state space of this system. In this particular case, it is worthwhile noting that we
could have used as the base states the states labelled by the position of the particle in the
well, i.e. the states |x〉.
As we have seen, there are an infinite number of such states which in a way is to be
expected as we have already seen that the state space is of infinite dimension. But the
difference between this set of states and the set of states |n〉 is that in the latter case, these
states are discrete, i.e. they can be labelled by the integers, while the states |x〉 are con-
tinuous, they are labelled by the continuous variable x. Thus, something new emerges
from this example: for state spaces of infinite dimension, it is possible to have a denu-
merably infinite number of basis states (i.e. the discrete states |n〉) or non-denumerably
infinite number of basis states (i.e. the states |x〉.) This feature of state spaces of infinite
dimension, plus others, are discussed separately below in Section 8.6.

A System of Identical Photons Many other features of a quantum system not related to
the position or energy of the system can be used as a means by which a set of basis states
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can be set up. An important example is one in which the system consists of a possibly
variable number of identical particles. One example is a ‘gas’ of photons, all of the same
frequency and polarization. Such a situation is routinely achieved in the laboratory using
suitably constructed hollow superconducting metallic cavities designed to support just
one mode (i.e. a single frequency and polarization) of the electromagnetic field. The state
of the electromagnetic field can then be characterized by the number n of photons in the
field which can range from zero to positive infinity, so that the states of the field (known
as number states) can be written |n〉 with n = 0, 1, 2, . . .. The state |0〉 is often referred to
as the vacuum state. These states will then constitute a complete, orthonormal set of basis
states (called Fock or number states), i.e.

〈n|m〉 = δnm (8.65)

and as n can range up to infinity, the state space for the system will be infinite dimensional.
An arbitrary state of the cavity field can be then be written

|ψ〉 =
∞∑

n=0

cn|n〉 (8.66)

so that |cn|2 will be the probability of finding n photons in the field. In terms of these basis
states, it is possible to describe the processes in which particles are created or destroyed.
For instance if there is a single atom in an excited energy state in the cavity, and the cavity
is in the vacuum state |0〉, then the state of the combined atom field system can be written
|e, 0〉, where the e indicates that the atom is in an excited state. The atom can later lose this
energy by emitting it as a photon, so that at some later time the state of the system will be
a|e, 0〉+ b|g, 1〉, where now there is the possibility, with probability |b|2, of the atom being
found in its ground state, and a photon having been created.

8.5 GeneralMathematical Description of a Quantum Sys-
tem

It was shown in preceding Sections that the mathematical description of this sum of prob-
ability amplitudes admits an interpretation of the state of the system as being a vector in
a complex vector space, the state space of the system. It is this mathematical picture that
is summarized here in the general case introduced in the immediately preceding Section.
This idea that the state of a quantum system is to be considered a vector belonging to a
complex vector space, which we have developed here in the case of a spin half system,
and which has its roots in the sum over paths point of view, is the basis of all of mod-
ern quantum mechanics and is used to describe any quantum mechanical system. Below
is a summary of the main points as they are used for a general quantum system whose
state spaces are of arbitrary dimension (including state spaces of infinite dimension). The
emphasis here is on the mathematical features of the theory.

8.5.1 State Space

We have indicated a number of times that in quantum mechanics, the state of a physical
system is represented by a vector belonging to a complex vector space known as the state
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space of the system. Here we will give a list of the defining conditions of a state space,
though we will not be concerning ourselves too much with the formalities. The following
definitions and concepts set up the state space of a quantum system.

1. Every physical state of a quantum system is specified by a vector called a state
vector, ket vector, or sometimes just state and written | . . .〉 where . . . is a label
specifying the physical information known about the state. An arbitrary state is
written |ψ〉, or |φ〉 and so on. The set of all state vectors describing a given physical
system forms a complex vector space (actually a Hilbert space, see Sec. 8.5.2) H
also known as the state space or ket space for the system.

2. Every linear superposition of two or more state vectors |φ1〉, |φ2〉, |φ3〉, . . . , is also a
state of the quantum system i.e. the state |ψ〉 given by

|ψ〉 = c1|φ1〉 + c2|φ2〉 + c3|φ3〉 + . . .

is a state of the system for all complex numbers c1, c2, c3, . . . .

These last two points amount to saying that every physical state of a system is represented
by a vector in the state space of the system, and every vector in the state space represents
a possible physical state of the system. To guarantee this, the following condition is also
imposed:

3. If a state of the system is represented by a vector |ψ〉, then the same state is repre-
sented by the vector c|ψ〉 where c is any non-zero complex number.

Finally, we need the concept of a set of basis states, and of the dimension of the state
space.

4. A set of vectors {|ϕ1〉, |ϕ2〉, |ϕ3〉, . . . } is said to form a basis for the state space if
every state of the quantum system can be represented as a linear superposition of
the |ϕi〉’s i.e. for any state |ψ〉 we can write

|ψ〉 =
∑

i

ci|ϕi〉.

The set of vectors {|ϕi〉, i = 1, 2, . . . } are said to span the vector space. The vec-
tors are also termed the base states for the vector space. They are also said to be
complete. What this means, mathematically, is that for every state |φ〉 say, at least
one of the inner products 〈ϕn|φ〉 will be non-zero, or conversely, there does not exist
a state |ξ〉 for which 〈ϕn|ξ〉 = 0 for all the basis states |ϕn〉. Completeness clearly
means that no more basis states are needed to describe any possible physical state
of a system.

For example, returning to the spin half system, the two states |±〉 are all that is needed to
describe any state of the system, i.e. there are no spin states that cannot be described in
terms of these basis states. Thus, these states are said to be complete.
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5. The minimum number of vectors needed to form a complete set of basis states is
known as the dimension of the state space. [In many, if not most cases of interest
in quantum mechanics, the dimension of the state space is infinite.]

It should be noted that there is an infinite number of possible sets of basis states for any
state space. The arguments presented above by which we arrive at a set of basis states (or
intermediate states) serves as a physically motivated starting point to construct the state
space for the system. But once we have defined the state space in this way, there is no
reason why we cannot, at least mathematically, construct other sets of basis states. These
basis states that we start with are particularly useful as they have an immediate physical
meaning; this might not be the case for an arbitrary basis set. But there are other means
by which other physically meaningful basis states can be determined: often the choice of
basis states is suggested by the physics (such as the set of eigenstates of an observable,
see Chapter 9).

8.5.2 Probability Amplitudes and the Inner Product of State Vectors

We obtained a number of properties of probability amplitudes when looking at the case
of a spin half system. Some of the results obtained there, and a few more that were not,
are summarized in the following.

If |φ〉 and |ψ〉 are any two state vectors belonging to the state spaceH , then

1. 〈φ|ψ〉, a complex number, is the probability amplitude of observing the system to
be in the state |φ〉 given that it is in the state |ψ〉.

2. The probability of observing the system to be in the state |φ〉 given that it is in the
state |ψ〉 is |〈φ|ψ〉|2.

The probability amplitude 〈φ|ψ〉, can then be shown to have the properties

3. 〈φ|ψ〉 = 〈ψ|φ〉∗.

4. (〈φ|{c1|ψ1〉 + c2|ψ2〉} = c1〈φ|ψ1〉 + c2〈φ|ψ2〉 where c1 and c2 are complex numbers.

5. 〈ψ|ψ〉 ≥ 0. If 〈ψ|ψ〉=0 then |ψ〉 = 0, the zero vector.

This last statement is related to the physically reasonable requirement that the probability
of a system being found in a state |ψ〉 given that it is in the state |ψ〉 has to be unity,
i.e. |〈ψ|ψ〉|2 = 1 which means that 〈ψ|ψ〉 = exp(iη). We now choose η = 0 so that
〈ψ|ψ〉 = 1, which is bigger than zero. But recall that any multiple of a state vector still
represents the same physical state of the system, i.e. |ψ̃〉 = a|ψ〉 still represents the same
physical state as |ψ〉. However, in this case, 〈ψ̃|ψ̃〉 = |a|2 which is not necessarily unity,
but is is certainly bigger than zero.

6. The quantity
√
〈ψ|ψ〉 is known as the length or norm of |ψ〉.

7. A state |ψ〉 is normalized, or normalized to unity, if 〈ψ|ψ〉 = 1.
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Normalized states are states for which probability is properly taken into account. It is
mathematically convenient to permit the use of states whose norms are not equal to unity,
but it is necessary in order to make use of the probability interpretation to deal only with
that state which has norm of unity. Any state that cannot be normalized to unity (i.e. it is
of infinite length) cannot represent a physically acceptable state.

8. Two states |φ〉 and |ψ〉 are orthogonal if 〈φ|ψ〉 = 0.

The physical significance of two states being orthogonal should be understood: for a
system in a certain state, there is zero probability of it being observed in a state with
which it is orthogonal. In this sense, two orthogonal states are as distinct as it is possible
for two states to be.

Finally, a set of orthonormal basis vectors {|ϕn〉; n = 1, 2, . . . } will have the property

9. 〈ϕm|ϕn〉 = δmn where δmn is known as the Kronecker delta, and equals unity if m = n
and zero if m ! n.

All the above conditions satisfied by probability amplitudes were to a greater or lesser
extent physically motivated, but it nevertheless turns out that these conditions are identical
to the conditions that are used to define the inner product of two vectors in a complex
vector space, in this case, the state space of the system, i.e. we could write, using the
usual mathematical notation for an inner product, 〈φ|ψ〉 = (|φ〉, |ψ〉). The state space of
a physical system is thus more than just a complex vector space, it is a vector space
on which there is defined an inner product, and so is more correctly termed a complex
‘inner product’ space. However, it is usually required in quantum mechanics that certain
convergency criteria, defined in terms of the norms of sequences of vectors belonging to
the state space, must be satisfied. This is not of any concern for spaces of finite dimension,
but are important for spaces of infinite dimension. If these criteria are satisfied then the
state space is said to be a Hilbert space. Thus rather than referring to the state space of a
system, reference is made to the Hilbert space of the system.

It is important to recognize that all the vectors belonging to a Hilbert space have finite
norm, or, putting it another way, all the state vectors can be normalized to unity – this
state of affairs is physically necessary if we want to be able to apply the probability inter-
pretation in a consistent way. However, as we shall see, we will encounter states which
do not have a finite norm and hence neither represent physically realizable states, nor do
they belong to the state or Hilbert space of the system. Nevertheless, with proper care re-
garding their use and interpretation, such states turn out to be essential, and play a crucial
role throughout quantum mechanics. Recognizing that a probability amplitude is nothing
but an inner product on the state space of the system, leads to a more general way of
defining what is meant by a bra vector. The following discussion emphasizes the fact that
a bra vector, while it shares many characteristices of a ket vector, is actually a different
mathematical entity.

Bra Vectors

We have consistently used the notation 〈φ|ψ〉 to represent a probability amplitude, but we
have just seen that this quantity is in fact nothing more than the inner product of two state
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vectors, which can be written in a different notation, (|φ〉, |ψ〉), that is more commonly
encountered in pure mathematics. But the inner product can be viewed in another way,
which leads to a new interpretation of the expression 〈φ|ψ〉, and the introduction of a new
class of state vectors. If we consider the equation

〈φ|ψ〉 = (|φ〉, |ψ〉) (8.67)

and ‘cancel’ the |ψ〉, we get the result

〈φ| • = (|φ〉, •) (8.68)

where the ‘•’ is inserted, temporarily, to remind us that in order to complete the equation,
a ket vector has to be inserted. By carrying out this procedure, we have introduced a
new quantity 〈φ| which is known as a bra or bra vector, essentially because 〈φ|ψ〉 looks
like quantities enclosed between a pair of ‘bra(c)kets’. It is a vector because, as can be
readily shown, the collection of all possible bras form a vector space. For instance, by the
properties of the inner product, if

|ψ〉 = a1|ϕ1〉 + a2|ϕ2〉 (8.69)

then

(|ψ〉, •) = 〈ψ| • = (a1|ϕ1〉 + a2|ϕ2〉, •) (8.70)
= a∗1(|ϕ1〉, •) + a∗2(|ϕ2〉, •) = a∗1〈ϕ1| • + a∗2〈ϕ2| • (8.71)

i.e., dropping the ‘•’ symbols, we have

〈ψ| = a∗1〈ϕ1| + a∗2〈ϕ2| (8.72)

so that a linear combination of two bras is also a bra, from which follows (after a bit more
work checking that the other requirements of a vector space are also satisfied) the result
that the set of all bras is a vector space. Incidentally, this last calculation above shows,
once again, that if |ψ〉 = a1|ϕ1〉+a2|ϕ2〉 then the corresponding bra is 〈ψ| = a∗1〈ϕ1|+a∗2〈ϕ2|.
So, in a sense, the bra vectors are the ‘complex conjugates’ of the ket vectors.

The vector space of all bra vectors is obviously closely linked to the vector space of all
the ketsH , and is in fact usually referred to as the dual space, and represented byH∗. To
each ket vector |ψ〉 belonging toH , there is then an associated bra vector 〈ψ| belonging to
the dual spaceH∗. However, the reverse is not necessarily true: there are bra vectors that
do not necessarily have a corresponding ket vector, and therein lies the difference between
bras and kets. It turns out that the difference only matters for Hilbert spaces of infinite
dimension, in which case there can arise bra vectors whose corresponding ket vector is of
infinite length, i.e. has infinite norm, and hence cannot be normalized to unity. Such ket
vectors can therefore never represent a possible physical state of a system. But these issues
will not arise here, so will not be of any concern. The point to be taken away from all this
is that a bra vector is not the same kind of mathematical object as a ket vector. In fact,
it has all the attributes of an operator in the sense that it acts on a ket vector to produce
a complex number, this complex number being given by the appropriate inner product.
This is in contrast to the more usual sort of operators encountered in quantum mechanics
that act on ket vectors to produce other ket vectors. In mathematical texts a bra vector
is usually referred to as a ‘linear functional’. Nevertheless, in spite of the mathematical



Chapter 8 Vector Spaces in Quantum Mechanics 101

distinction that can be made between bra and ket vectors, the correspondence between the
two kinds of vectors is in most circumstances so complete that a bra vector equally well
represents the state of a quantum system as a ket vector. Thus, we can talk of a system
being in the state 〈ψ|.
We can summarize all this in the general case as follows: The inner product (|ψ〉, |φ〉)
defines, for all states |ψ〉, the set of functions (or linear functionals) (|ψ〉, ). The linear
functional (|ψ〉, ) maps any ket vector |φ〉 into the complex number given by the inner
product (|ψ〉, |φ〉).

1. The set of all linear functionals (|ψ〉, ) forms a complex vector space H∗, the dual
space ofH .

2. The linear functional (|ψ〉, ) is written 〈ψ| and is known as a bra vector.

3. To each ket vector |ψ〉 there corresponds a bra vector 〈ψ| such that if |φ1〉 → 〈φ1|
and |φ2〉 → 〈φ2| then

c1|φ1〉 + c2|φ2〉 → c∗1〈φ1| + c∗2〈φ2|.

8.6 State Spaces of Infinite Dimension

Some examples of physical systems with state spaces of infinite dimension were provided
in the previous Section. In these examples, we were able to proceed, at least as far as
constructing the state space was concerned, largely as was done in the case of finite di-
mensional state spaces. However, further investigation shows that there are features of
the mathematics, and the corresponding physical interpretation in the infinite dimensional
case that do not arise for systems with finite dimensional state spaces. Firstly, it is possi-
ble to construct state vectors that cannot represent a state of the system and secondly, the
possibility arises of the basis states being continuously infinite. This latter state of affairs
is not at all a rare and special case – it is just the situation needed to describe the motion
of a particle in space, and hence gives rise to the wave function, and wave mechanics.

8.6.1 States of Infinite Norm

To illustrate the first of the difficulties mentioned above, consider the example of a sys-
tem of identical photons in the state |ψ〉 defined by Eq. (8.66). As the basis states are
orthonormal we have for 〈ψ|ψ〉

〈ψ|ψ〉 =
∞∑

n=0

|cn|2 (8.73)

If the probabilities |cn|2 form a convergent infinite series, then the state |ψ〉 has a finite
norm, i.e. it can be normalized to unity. However, if this series does not converge, then it
is not possible to supply a probability interpretation to the state vector as it is not normal-
izable to unity. For instance, if c0 = 0 and cn = 1/

√
n, n = 1, 2, . . ., then

〈ψ|ψ〉 =
∞∑

n=1

1
n

(8.74)
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which is a divergent series, i.e. this state cannot be normalized to unity. In contrast, if
cn = 1/n, n = 1, 2, . . ., then

〈ψ|ψ〉 =
∞∑

n=0

1
n2
=
π2

6
(8.75)

which means we can normalize this state to unity by defining

|ψ̃〉 =
√
6
π
|ψ〉. (8.76)

This shows that there are some linear combination of states that do not represent possible
physical states of the system. Such states do not belong to the Hilbert space H of the
system, i.e. the Hilbert space consists only of those states for which the coefficients cn
satisfy Eq. (8.73) 2. This is a new feature: the possibility of constructing vectors that do
not represent possible physical states of the system. It turns out that some very useful
basis states have this apparently undesirable property, as we will now consider.

8.6.2 Continuous Basis States

If we now turn to the example in the previous section of the infinite crystal, we can con-
sider what happens if we suppose that the separation between the neighbouring atoms in
the crystal goes to zero, so that the electron can be found anywhere over a range extending
from −∞ to ∞. This, in effect, is the continuous limit of the infinite crystal model just
presented, and represents the possible positions that a particle free to move anywhere in
one dimension, the X axis say, can have. In this case, we could label the possible states
of the particle by its X position, i.e. |x〉, where now, instead of having the discrete values
of the crystal model, the position can now assume any of a continuous range of values,
−∞ < x < ∞. It would seem that we could then proceed in the same way as we have
done with the discrete states above, but it turns out that such states cannot be normalized
to unity and hence do not represent (except in an idealised sense) physically allowable
states of the system.

The aim here is to try to develop a description of the possible basis states for a particle
that is not limited to being found only at discrete positions on the X axis. After all, in
principle, we would expect that a particle in free space could be found at any position x in
the range −∞ < x < ∞. We will get at this description by a limiting procedure which is
not at all mathematically rigorous, but nevertheless yields results that turn out to be valid.

2Note however, that we can still construct a bra vector

〈ψ| =
n=∞∑

n=0
c∗n〈n|

without placing any restrictions on the convergence of the cn’s such as the one in Eq. (8.73). The corre-
sponding ket cannot then represent a possible state of the system, but such inner products as 〈ψ|φ〉 where |φ〉
is a normalized ket can still be evaluated. The point being made here is that if H is of infinite dimension,
the dual spaceH∗ can also include bra vectors that do not correspond to normalized ket vectors inH , which
emphasizes the fact thatH∗ is defined as a set of linear functionals, and not simply as a ‘complex conjugate’
version of H . The distinction is important in some circumstances, but we will not have to deal with such
cases.
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Suppose we return to the completeness relation for the states |na〉 for the one dimensional
crystal

|ψ〉 =
+∞∑

n=−∞
|na〉〈na|ψ〉. (8.77)

If we now put a = ∆x and na = xn, BUT we write |na〉 =
√
a|xn〉, this becomes

|ψ〉 =
+∞∑

n=−∞
|xn〉〈xn|ψ〉∆x (8.78)

where now
〈xn|xm〉 =

δnm
a

(8.79)

i.e. each of the states |xn〉 is not normalized to unity, but we can nevertheless identify such
a state as being that state for which the particle is at position xn – recall if a state vector is
multiplied by a constant, it still represents the same physical state of the system.

If we put to one side any concerns about the mathematical legitimacy of what follows, we
can now take the limit ∆x → 0, i.e. a → 0, then Eq. (8.78) can be written as an integral,
i.e.

|ψ〉 =
∫ +∞

−∞
|x〉〈x|ψ〉 dx (8.80)

We can identify the state |x〉 with the physical state of affairs in which the particle is at the
position x, and the expression Eq. (8.80) is consistent with the completeness requirement
i.e. that the states {|x〉,−∞ < x < ∞} form a complete set of basis states, so that any state
of the one particle system can be written as a superposition of the states |x〉, though the
fact that the label x is continuous has forced us to write the completeness relation as an
integral. The difficulty with this procedure is that the states |x〉 are no longer normalized
to unity. This we can see from Eq. (8.79) which tells us that 〈x|x′〉 will vanish if x ! x′,
but for x = x′ we see that

〈x|x〉 = lim
a→0

1
a
= ∞ (8.81)

i.e. the state |x〉 has infinite norm! This means that there is a price to pay for trying to set up
the mathematics in such a manner as to produce the completeness expression Eq. (8.80),
which is that we are forced to introduce basis states which have infinite norm, and hence
cannot represent a possible physical state of the particle! Nevertheless, provided care is
taken, it is still possible to work with these states as if they represent the state in which
the particle is at a definite position. To see this, we need to look at the orthonormality
properties of these states, and in doing so we are lead to introduce a new kind of function,
the Dirac delta function.

8.6.3 The Dirac Delta Function

We have just seen that the inner product 〈x|x′〉 vanishes if x ! x′, but appears to be infinite
if x = x′. In order to give some mathematical sense to this result, we return to Eq. (8.80)
and look more closely at the properties that 〈x|x′〉must have in order for the completeness
relation also to make sense.
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The probability amplitude 〈x|ψ〉 appearing in Eq. (8.80) are functions of the continuous
variable x, and is often written 〈x|ψ〉 = ψ(x), which we identify as the wave function of
the particle. If we now consider the inner product

〈x′|ψ〉 =
∫ +∞

−∞
〈x′|x〉〈x|ψ〉dx (8.82)

or

ψ(x′) =
∫ +∞

−∞
〈x′|x〉ψ(x)dx (8.83)

we now see that we have an interesting difficulty. We know that 〈x′|x〉 = 0 if x′ ! x, so
if 〈x|x〉 is assigned a finite value, the integral on the right hand side will vanish, so that
ψ(x) = 0 for all x!! But if ψ(x) is to be a non-trivial quantity, i.e. if it is not to be zero for
all x, then it cannot be the case that 〈x|x〉 is finite. In other words, 〈x′|x〉 must be infinite
for x = x′ in some sense in order to guarantee a non-zero integral. The way in which this
can be done involves introducing a new ‘function’, the Dirac delta function, which has
some rather unusual properties.

What we are after is a ‘function’ δ(x − x0) with the property that

f (x0) =
∫ +∞

−∞
δ(x − x0) f (x)dx (8.84)

for all (reasonable) functions f (x).

So what is δ(x − x0)? Perhaps the simplest way to get at what this function looks like is
to examine beforehand a sequence of functions defined by

D(x, ε) = ε−1 −ε/2 < x < ε/2
= 0 x < −ε/2, x > ε/2. (8.85)
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f (x)

x

Figure 8.6: A sequence of rectangles of de-
creasing width but increasing height, main-
taining a constant area of unity approaches an
infinitely high ‘spike’ at x = 0..

What we first notice about this function is
that it defines a rectangle whose area is al-
ways unity for any (non-zero) value of ε, i.e.

∫ +∞

−∞
D(x, ε)dx = 1. (8.86)

Secondly, we note that as ε is made smaller,
the rectangle becomes taller and narrower.
Thus, if we look at an integral
∫ +∞

−∞
D(x, ε) f (x)dx = ε−1

∫ ε/2

−ε/2
f (x)dx

(8.87)
where f (x) is a reasonably well behaved func-
tion (i.e. it is continuous in the neighbour-
hood of x = 0), we see that as ε → 0, this
tends to the limit f (0). We can summarize
this by the equation

lim
ε→0

∫ +∞

−∞
D(x, ε) f (x)dx = f (0). (8.88)

Taking the limit inside the integral sign (an illegal mathematical operation, by the way),
we can write this as

∫ +∞

−∞
lim
ε→0

D(x, ε) f (x)dx =
∫ +∞

−∞
δ(x) f (x) = f (0) (8.89)

where we have introduced the ‘Dirac delta function’ δ(x) defined as the limit

δ(x) = lim
ε→0

D(x, ε), (8.90)

a function with the unusual property that it is zero everywhere except for x = 0, where it
is infinite.

The above defined function D(x, ε) is but one ‘representation’ of the Dirac delta function.
There are in effect an infinite number of different functions that in an appropriate limit
behave as the rectangular function here. Some examples are

δ(x − x0) = lim
L→∞

1
π

sin L(x − x0)
x − x0

= lim
ε→0

1
π

ε

(x − x0)2 + ε2
(8.91)

= lim
λ→∞

1
2λe

−λ|x−x0 |.

In all cases, the function on the right hand side becomes narrower and taller as the limit is
taken, while the area under the various curves remains the same, that is, unity.

The first representation above is of particular importance. It arises by via the following
integral:

1
2π

∫ +L

−L
eik(x−x0)dk =

eiL(x−x0) − eiL(x−x0)
2πi(x − x0)

=
1
π

sin L(x − x0)
x − x0

(8.92)
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In the limit of L→ ∞, this then becomes
1
2π

∫ +∞

−∞
eik(x−x0)dk = δ(x − x0). (8.93)

The delta function is not to be thought of as a function as it is usually defined in pure
mathematics, but rather it is to be understood that a limit of the kind outlined above is
implied whenever the delta function appears in an integral3. However, such mathematical
niceties do not normally need to be a source of concern in most instances. It is usually
sufficient to be aware of the basic property Eq. (8.84) and a few other rules that can be
proven using the limiting process, such as

δ(x) = δ(−x)

δ(ax) =
1
|a|δ(x)

xδ(x) = 0
∫ +∞

−∞
δ(x − x0)δ(x − x1) = δ(x0 − x1)

∫ +∞

−∞
f (x)δ′(x − x0)dx = − f ′(x0).

The limiting process should be employed if there is some doubt about any result obtained.
For instance, it can be shown that the square of a delta function cannot be given a satis-
factory meaning.

Delta Function Normalization

Returning to the result

ψ(x′) =
∫ +∞

−∞
〈x′|x〉ψ(x)dx (8.94)

we see that the inner product 〈x′|x〉, must be interpreted as a delta function:

〈x′|x〉 = δ(x − x′). (8.95)

The states |x〉 are said to be delta function normalized, in contrast to the orthonormal
property of discrete basis states. One result of this, as has been pointed out earlier, is that
states such as |x〉 are of infinite norm and so cannot be normalized to unity. Such states
states cannot represent possible physical states of a system, though it is often convenient,
with caution, to speak of such states as if they were physically realizable. Mathematical
(and physical) paradoxes can arise if care is not taken. However, linear combinations
of these states can be normalized to unity, as this following example illustrates. If we
consider a state |ψ〉 given by

|ψ〉 =
∫ +∞

−∞
|x〉〈x|ψ〉dx, (8.96)

3This raises the question as to whether or not it would matter what representation of the delta function is
used. Provided the function f (x) is bounded over (−∞,+∞) there should be no problem, but if the function
f (x) is unbounded over this interval, e.g. f (x) = exp(x2), then only the rectangular representation of the
delta function will give a sensible answer.
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then
〈ψ|ψ〉 =

∫ +∞

−∞
〈ψ|x〉〈x|ψ〉dx. (8.97)

But 〈x|ψ〉 = ψ(x) and 〈ψ|x〉 = ψ(x)∗, so that

〈ψ|ψ〉 =
∫ ∞

−∞
|ψ(x)|2dx. (8.98)

Provided |ψ(x)|2 is a well behaved function, in particular that it vanish as x → ±∞, this
integral will converge to a finite result, so that the state |ψ〉 can indeed be normalized to
unity, and if so, then we can interpret |ψ(x)|2dx as the probability of finding the particle in
the region (x, x + dx), which is just the standard Born interpretation of the wave function.

8.6.4 Separable State Spaces

We have seen that state spaces of infinite dimension can be set up with either a denumer-
ably infinite number of basis states, i.e. the basis states are discrete but infinite in number,
or else a non-denumerably infinite number of basis states, i.e. the basis states are labelled
by a continuous parameter. Since a state space can be spanned by more than one set of
basis states, it is worthwhile investigating whether or not a space of infinite dimension
can be spanned by a set of denumerable basis states, as well as a set of non-denumerable
basis states. An example of where this is the case was given earlier, that of a particle
in an infinitely deep potential well, see p95. It transpires that not all vector spaces of
infinite dimension have this property, i.e. that they can have both a denumerable and a
non-denumerable set of basis states. Vector spaces which can have both kinds of basis
states are said to be separable, and in quantum mechanics it is assumed that state spaces
are separable.

8.7 States of Macroscopic Systems

In the examples given above, it was assumed that an exhaustive list of results that could
be obtained in the measurement of some observable of a quantum system could be used
to set up the basis states for the state space of the system. The value of doing this is,
of course, to be determine by the success or otherwise of these ideas. That quantum
mechanics is such an overwhelmingly successful theory indicates that there is something
correct in this procedure, but the question that arises is this: why does it not appear to
work for macroscopic systems, i.e. for systems which we know can be fully adequately
explained by standard classical physics? The answer appears to lie in the fact that in
all the examples discussed above, whether or not the Hilbert space is of finite or infinite
dimension, i.e. whether or not we are talking about spin up or spin down of a spin half
particle, or the position of a particle in space, the implicit assumption is that the system we
are considering is totally isolated from all other systems, in particular from any influence
of the surrounding environment. After all, when we talked about a system, such as an
O−2 ion, we are ignoring all the other physical influences that could act on this system,
i.e. we do not need to mention, in our specification of the state of the system, anything
other than properties that directly pertain to the system of interest. The assumption is
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made, as it is in classical physics, that such influences are sufficiently weak that they can
be ignored to a good approximation. In effect, we are supposing that the systems under
consideration are isolated systems, that is, systems that are isolated from the effect of any
external perturbations.

Classically, at the macroscopic level, we can usually continue to ignore weak perturbing
influences when specifying the state of a system. In fact, when defining a ‘system’ we
typically include in what we refer to as the ‘system’, all the participants in the physical
process being described that interact strongly with each other. Anything else that weakly
affects these constitutents is ignored. For instance, when describing the orbital dynamics
of the Earth as it revolves around the Sun, we might need to take into account the grav-
itational pull of the Moon – the system is the Earth, the Sun and the Moon. But we do
not really need to take into account the effect of the background microwave radiation left
over after the Big Bang. Or, when describing the collision between two billiard balls, it
is probably necessary to include the effect of rolling friction, but it not really necessary
to take into account the frictional drag due to air resistance. Of course, sometimes it is
necessary to include external influences even when weak: to describe a system coming to
thermal equilibrium with its surroundings it is necessary to extend the system by includ-
ing the environment in the dynamical model. In any of these examples, the same classical
physics methods and philosophy applies.

There is a subtle difference when it comes to trying to apply the quantum ideas developed
so far to macroscopic systems. The same, weak perturbations that can be put to one side
in a classical description of a macroscopic system turn out to have a far-reaching effect if
included in a quantum description of the same system. If we were to attempt to describe a
macroscopic system according to the laws of quantum mechanics, we would find that any
linear superposition of different possible states of the system evolves on a fantastically
short time scale to a classical mixture of the different possibilities. For instance, if we
were to attempt to describe the state of a set of car keys in terms of two possibilities: in
your pocket |p〉 or in your brief case |b〉, then a state of the form

|ψ〉 = 1√
2
(|p〉 + |b〉) (8.99)

could be used to represent a possible ‘quantum state’ of the keys. But this quantum state
would be exceedingly short lived (on a time scale ∼ 10−40 sec), and would evolve into the
two alternative possibilities: a 50% chance of the keys being in the state |p〉, i.e. a 50%
chance of finding your keys in your pocket, and a 50% chance of being in the state |b〉,
i.e. a 50% chance of finding them in your brief case. But this is no longer a superposition
of these two states. Instead, the keys are either in the state |p〉 or the state |b〉. What
this effectively means is that randomness is still there, i.e. repeating an experiment under
identical conditions can give randomly varying results. But the state of the keys is no
longer represented by a state vector, so there are no longer any quantum interference
effects present. The randomness can then be looked upon as being totally classical in
nature, i.e. as being due to our ignorance of information that is in principle there, but
impossibly difficult to access. In effect, the quantum system behaves like a noisy classical
system.

The process that washes out the purely quantum effects is known as decoherence. Since
it is effectively impossible to isolate any macroscopic system from the influence of its
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surrounding environment4, all macroscopic systems (with very few exceptions such as
superfluid SQUID junctions) are subject to decoherence. This process is believed to play
a crucial role in why, at the macroscopic level, physical systems, which are all intrinsically
quantum mechanical, behave in accordance with the classical laws of physics. It is also
one of the main corrupting influences that prevent a quantum computer from functioning
as it should. Quantum computers rely for their functioning on the ‘qubits’ remaining in
linear superpositions of states, but the ever-present decohering effects of the environment
will tend to destroy these delicate quantum states before a computation is completed, or
else at the very least introduce errors as the computation proceeds. Controlling deco-
herence is therefore one of the major challenges in the development of viable quantum
computers.

So, the bottom line is that it is only for protected isolated systems that quantum effects are
most readily observed, and it is for microscopic systems that this state of affairs is to be
found. But that is not to say that quantum effects are not present at the macroscopic level.
Peculiar quantum effects associated with the superposition of states are not to be seen, but
the properties of matter in general, and indeed the properties of the forces of nature, are
all intrinsically quantum in origin.

4‘No man is an Iland, intire of itselfe’ – J. Donne, Devotions upon Emergent OccasionsMeditation XVII
(1693)


