
Chapter 10

Representations of State Vectors and
Operators

In the preceding Chapters, the mathematical ideas underpinning the quantum theory have
been developed in a fairly general (though, admittedly, not a mathematically rigorous)
fashion. However, much that has been presented, particularly the concept of an operator,
can be developed in another way that is, in some respects, less abstract than what has
been used so far. This alternate form of presentation involves working with the compo-
nents of the state vectors and operators, leading to their being represented by column and
row vectors, and matrices. This development of the theory is completely analogous to the
way in which this is done when dealing with the position vector in ordinary three dimen-
sional space. Below, we will look at how the idea of writing the position vectors in two
dimensional space can be written in terms of column and row vectors. We will then use
the ideas developed there to show how state vectors and operators can be expressed in a
similar fashion. This alternate route offers another way of introducing such concepts as
adding, multiplying and taking the inverse of operators through their representations as
matrices, and further provides another way to introduce the idea of the Hermitean adjoint
of an operator, and of a Hermitian operator.

10.1 Representation of Vectors In Euclidean Space as Col-
umn and Row Vectors

When writing down a vector, we have so far made explicit the basis vectors when writing
an expression such as r = xî + yĵ for a position vector, or |S 〉 = a|+〉 + b|−〉 for the state
of a spin half system. But the choice of basis vectors is not unique, i.e. we could use
any other pair of orthonormal unit vectors î′ and ĵ′, and express the vector r in terms of
these new basis vectors, though of course the components of r will change. The same is
true for the spin basis vectors |±〉, i.e. we can express the state |S 〉 in terms of some other
basis vectors, such as the states for which the x component of spin has the values S x =

1
2!,

though once again, the components of |S 〉will now be different. But it is typically the case
that once the choice of basis vectors have been decided on, it should not be necessary to
always write them down when writing down a vector, i.e. it would be just as useful to
just write down the components of a vector. Doing this leads to a convenient notation in
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which vectors are written in terms of column and row vectors. It also provides a direct
route to some of the important mathematical entities encountered in quantum mechanics
such as bra vectors and operators that are more rigorously introduced in a more abstract
way.

10.1.1 Column Vectors

To illustrate the ideas, we will use the example of a position vector in two dimensional
space. The point that is to be established here is that a position vector is an independently
existing geometrical object ‘suspended’ in space, much as a pencil held in the air with a
steady position and orientation has a fixed length and orientation. One end of the pencil,
say where the eraser is, can be taken to be the origin O, and the other end (the sharp end)
the position of a point P. Then the position and orientation of the pencil defines a position
vector r of Pwith respect to the originO. This vector can be represented by a single arrow
joining O to P whose length and orientation specify the position of P with respect to O.
As such, the vector r also has an independent existence as a geometrical object sitting in
space, and we can work with this vector r and others like it by, for instance, performing
vector additions by using the triangle law of vector addition as illustrated in Fig. (8.1), or
performing scalar products by use of the definition Eq. (8.2).

In what was just described, we work only with the whole vector itself. This is in contrast
with a very useful alternate way of working with vectors, that is to express any vector
as a linear combination of a pair of basis vectors (in two dimensions), which amounts
to building around these vectors some sort of ‘scaffolding’, a coordinate system such as
a pair of X and Y axes, and describe the vector in terms of its components with respect
to these axes. More to the point, what is provided is a pair of basis vectors such as the
familiar unit vectors î and ĵ and write r = xî + yĵ. We see that any position vector can be
written in this way, i.e. the unit vectors constitute a pair of orthonormal basis vectors, and
x and y are known as the components of r with respect to the basis vectors î and ĵ. We can
then work out how to add vectors, calculate scalar products and so on working solely with
these components. For instance, if we have two vectors r̂1 and r̂2 given by r̂1 = x1î + y1ĵ
and r̂2 = x2î + y2ĵ then r̂1 + r̂2 = (x1 + x2)î + (y1 + y2)ĵ.

It is important to note that while
a vector r̂ is a unique geometrical
object, there is no unique choice
of basis vectors, and correspond-
ingly the components of the vec-
tor will change depending on the
choice of basis vectors. Thus we
could equally well have chosen the
basis vectors î′ and ĵ′, as illustrated
in Fig. (10.1) so that the same vec-
tor r can be written

r = x′ î′ + y′ ĵ′ = x î + y ĵ (10.1)

with x′ ! x and y′ ! y.

î

î′

ĵ
ĵ′

r
y

x y′

x′
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O
Figure 10.1: The position vector r written as a linear
combination of two different pairs of orthonormal ba-
sis vectors. Although the coordinates of r are different
with respect to the two sets of basis vectors, the vector
r remains the same.
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Once a choice of basis vectors has been made, it proves to be very convenient to work
solely with the coordinates. There is a useful notation by which this can be done. In this
notation, the vector r is written as

r "




x

y




(10.2)

what is known as a column vector. We then say that this column vector is a representation
of the vector r with respect to the basis vectors î and ĵ. It is important to note that we
do not say that r equals the column vector, in fact it is not an equal sign that is used in
Eq. (10.2), rather the symbol ‘"’ is used, which is to be read as ‘is represented by’. The
reason for this is that, as mentioned above, while the vector r is a unique geometrical
object, its components are not – they depend on the choice of basis vectors. We could
have equally chosen basis vectors î′ and ĵ′, and since the components x′ and y′ will be, in
general, different from x and y, we end up with a different column vector representing the
same vector:

r "




x′

y′



. (10.3)

i.e. two apparently different column vectors representing the same vector r. Equivalently,
if we had two column vectors with exactly the same numbers in the two positions, we
could not conclude that they represent the same vector unless we were told that the basis
vectors were the same in each case. Thus if there is any chance of ambiguity, we need to
make it clear when we use the column vector notation, exactly what the basis vectors are.
The terminology then is to say that the vector r is given by the column vector in Eq. (10.2)
in the {î, ĵ} representation.
Once a choice of basis vectors has been settled on, and consistently used, we can proceed
with vector calculations using the new notation. Thus, for instance, we can add two
vectors:

r = r1 + r2 (10.4)

which becomes, using the {î, ĵ} representation



x

y



=




x1

y1



+




x2

y2



=




x1 + x2

y1 + y2



. (10.5)

10.1.2 Row Vectors

The scalar product (r1, r2) = r1 · r2 can be calculated by using the usual rule r1 · r2 =
r1r2 cos θ, but it can also be expressed in terms of the components of r1 and r2 in, say,
the {î, ĵ} representation, though note that the same numerical result is obtained whaatever
representation is used. The result is simply

(r1, r2) = r1 · r2 = x1x2 + y1y2. (10.6)
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At this point we note that, if we use the rules of matrix multiplication, this last result can
be written

(r1, r2) = r1 · r2 =
(
x1 y1

)



x2

y2




(10.7)

where we note the appearance of the column vector representing the vector r2, but r1, the
first factor in the scalar product, has been represented by a row vector. If the components
of r1 and r2 were complex, then we would write the inner product as

(r1, r2) = r∗1 · r2 = x∗1x2 + y∗1y2 =
(
x∗1 y∗1

)



x2

y2




(10.8)

The use of a row vector to represent r1 can be looked on here as a convenience so that the
rules of matrix multiplication can be applied, but there is a deeper significance to its use1
that will become apparent when we look at the column and row vector representations of
ket and bra vectors.

10.2 Representations of State Vectors and Operators

The procedure here is identical to that which was followed in the case of the position
vector, i.e. we introduce a complete set of orthonormal basis states {|ϕn〉; n = 1, 2, . . . }
that span the state space of the quantum system, and then work with the components of
the ket and bra vectors, and the operators. Of course, we now do not have the luxury of
interpreting these basis vectors as representing physical directions in real space – rather
they are abstract vectors in a multi-dimensional complex vector space, but much of what
has been said above in connection with vectors in ordinary Euclidean space can be carried
over to this more abstract situation.

10.2.1 Row and Column Vector Representations for Spin Half State
Vectors

To set the scene, we will look at the particular case of spin half state vectors for which, as
we have seen earlier, Sec. 8.2, an arbitrary state |S 〉 can be written

|S 〉 = |−〉〈−|S 〉 + |+〉〈+|S 〉,

i.e the state |S 〉 is expressed as a linear combination of the two basis states |±〉. We
further saw that the ket vectors as |+〉, |−〉 could be put into direct correspondence with
the (complex) unit vectors û1 and û2 respectively, and that the probability amplitudes

1Effectively, what is going on is that corresponding to any vector r represented by a column vector, there
corresponds another vector r∗ known as its dual which is represented by a row vector. The original vector
is the ‘physical’ vector while its dual is an abstract mathematical companion. The original vector and its
dual belong to two different vector spaces.
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〈±|S 〉 are the components of |S 〉 in the ‘direction’ of the basis states |±〉. We can complete
the analogy with the case of ordinary vectors by noting that we could then write this ket
vector as a column vector, i.e.

|S 〉 "




〈−|S 〉

〈+|S 〉



. (10.9)

If we pursue this line further, we can get an idea of how to interpret bra vectors. To do
this, consider the more general probability amplitudes 〈S ′|S 〉. This we can write as

〈S ′|S 〉 = 〈S ′|−〉〈−|S 〉 + 〈S ′|+〉〈+|S 〉. (10.10)

If we now use
〈±|S 〉 = 〈S |±〉∗ (10.11)

this becomes
〈S ′|S 〉 = 〈−|S ′〉∗〈−|S 〉 + 〈+|S ′〉∗〈+|S 〉 (10.12)

which we can write as

〈S ′|S 〉 =
(
〈−|S ′〉∗ 〈+|S ′〉∗

)



〈−|S 〉

〈+|S 〉



. (10.13)

In other words, the bra vector 〈S ′| is represented by the row vector
〈S ′| "

(
〈−|S ′〉∗ 〈+|S ′〉∗

)
. (10.14)

This shows that a bra vector is more than just the ‘complex conjugate’ of a ket vector,
since a row vector is not the same as a column vector.

We can now extend the idea to the more general situation of a state space of dimension
n > 2.

10.2.2 Representation of Ket and Bra Vectors

In terms of the basis states {|ϕn〉; n = 1, 2, . . . }, an arbitrary state vector |ψ〉 can be written
as

|ψ〉 =
∑

n

|ϕn〉〈ϕn|ψ〉. (10.15)

Let us now write
〈ϕn|ψ〉 = ψn. (10.16)

We then have, by analogy with the position vector:

|ψ〉 "




ψ1

ψ2

ψ3

...




. (10.17)
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This is a representation of |ψ〉 as a column vector with respect to the set of basis states
{|ϕn〉; n = 1, 2, . . . }. In particular, the basis state |ϕm〉 will have components

(ϕm)n = 〈ϕn|ϕm〉 = δnm (10.18)

and so they will be represented by column vectors of the form

|ϕ1〉 "




1

0

0

...




|ϕ2〉 "




0

1

0

...




. . . (10.19)

i.e. the mth component ϕnm of |ϕn〉 is zero except in the mth position where ϕmm = 1.
Now form the inner product 〈χ|ψ〉:

〈χ|ψ〉 =
∑

n

〈χ|ϕn〉〈ϕn|ψ〉. (10.20)

We know that 〈χ|ϕn〉 = (〈ϕn|χ〉)∗, and following on from the notation introduce above, we
write χn = 〈ϕn|χ〉 so that

〈χ|ϕn〉 = χ∗n (10.21)

and hence
〈χ|ψ〉 =

∑

n

χ∗nψn (10.22)

which we can write as

〈χ|ψ〉 =
(
χ∗1 χ

∗
2 χ

∗
3 . . .

)




ψ1

ψ2

ψ3

...




(10.23)

which we evaluate by the usual rules of matrix multiplication. Note that here we have
made the identification of the bra vector 〈χ| as a row vector:

〈χ| "
(
χ∗1 χ

∗
2 χ

∗
3 . . .

)
(10.24)

with respect to the set of basis states {|ϕn〉; n = 1, 2, . . . }. This can be compared with the
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representation of the ket vector |χ〉 as a column vector:

|χ〉 "




χ∗1

χ∗2

χ∗3

...




. (10.25)

This difference in appearance of the representation of a bra and a ket vector, the first as a
row vector, the second as a column vector, perhaps emphasizes the point made in Section
8.5.2 that the bra vectors form a vector space, the dual Hilbert space H∗ related to, but
distinct from, the Hilbert space H of the ket vectors. In a sense, a bra vector can be
thought of as something akin to being the ‘complex conjugate’ of its corresponding ket
vector.

10.2.3 Representation of Operators

Now turn to the operator equation
Â|ψ〉 = |φ〉 (10.26)

which we can write as

|φ〉 = Â|ψ〉 = Â
∑

n

|ϕn〉〈ϕn|ψ〉 =
∑

n

Â|ϕn〉〈ϕn|ψ〉. (10.27)

Then
〈ϕm|φ〉 =

∑

n

〈ϕm|Â|ϕn〉〈ϕn|ψ〉 (10.28)

which we can write as
φm =

∑

n

Amnψn (10.29)

where
Amn = 〈ϕm|Â|ϕn〉. (10.30)

We can write this as a matrix equation:



φ1

φ2

φ3

...




=




A11 A12 A13 . . .

A21 A22 A23 . . .

A31 A32 A33 . . .

...
...

...







ψ1

ψ2

ψ3

...




(10.31)
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where the operator Â is represented by a matrix:

Â "




A11 A12 A13 . . .

A21 A22 A23 . . .

A31 A32 A33 . . .

...
...

...




. (10.32)

The quantities Amn are known as the matrix elements of the operator Â with respect to the
basis states {|ϕn〉; n = 1, 2, . . . }.
It is important to keep in mind that the column vectors, row vectors, and matrices above
are constructed with respect to a particular set of basis states. If a different set of basis
states are used, then the state vectors and operators remain the same, but the column or row
vector, or matrix representing the state vector or operator respectively will change. Thus,
to give any meaning to a row vector, or a column vector, or a matrix, it is essential that
the basis states be known. An important part of quantum mechancis is the mathematical
formalism that deals with transforming between different sets of basis states. However,
we will not be looking at transformation theory here.

Ex 10.1 Consider two state vectors
|1〉 = 1√

2

[|−〉 − i|+〉] |2〉 = 1√
2

[|−〉 + i|+〉]

where |±〉 are the usual base states for a spin half system. We want to repre-
sent these ket vectors as column vectors with respect to the set of basis states
{|+〉, |−〉}. Firstly, we note that in the general development described above, we
assumed that the basis states were named |ϕ1〉, |ϕ2〉 and so on. But here we are
using a different way of labelling the basis states, which means we have a choice
as to which of |±〉 we identify with |ϕ1〉 and |ϕ2〉. If makes no difference what
we choose: we make the choice to suit ourselves, and provided we use it con-
sistently then no problems should arise. Thus, here, we will choose |ϕ1〉 = |+〉
and |ϕ2〉 = |−〉. Thus we can write write

|+〉 "




1

0




and |−〉 "




0

1



.

We can then express the states |1〉 and |2〉 in column vector notation as

|1〉 " 1√
2




−i

1




which can also be written as

|1〉 " − i√
2




1

0



+ 1√

2




0

1



.
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The corresponding bra vectors are

〈1| = 1√
2

[〈−| + i〈+|] 〈2| = 1√
2

[〈−| − i〈+|]

or, as row vectors

〈1| " (i 1
)
and 〈2| " ( − i 1

)
.

We can calculate inner products as follows:

〈1|2〉 = 1
2
(
i 1
)




i

1




= 0,

〈1|1〉 = 1
2
(
i 1
)




−i

1




= 1.

and so on.

Ex 10.2 We can also look at the operator Â defined by

Â|±〉 = ± 12 i!|∓〉

which can be written out in matrix form as

Â "




〈+|Â|+〉 〈+|Â|−〉

〈−|Â|+〉 〈−|Â|−〉



=




0 − 12 i!

1
2 i! 0




so that, for instance

Â|1〉 "




0 − 12 i!

1
2 i! 0







− i√
2

1√
2




= − 12 i!




1√
2

i√
2




= 1
2!




− i√
2

1√
2



.

Thus we have Â|1〉 = 1
2!|1〉, which incidentally shows that |1〉 is an eigenstate

of Â.
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Using the representations of bra vectors and operators, it is straightforward to see what
the action of an operator on a bra vector is given by. Thus, we have:

〈ψ|Â " (ψ1 ψ2 ψ3 . . .
)




A11 A12 A13 . . .

A21 A22 A23 . . .

A31 A32 A33 . . .

...
...

...




=
(
ψ1A11 + ψ2A21 + . . . ψ2A12 + ψ2A22 + . . . ψ1A13 + ψ2A23 + . . . . . .

)
. (10.33)

The final result can then be written in the corresponding bra vector notation if desired.
This can be illustrated by example.

Ex 10.3 Evaluate 〈2|Â using the representations of the bra vector |2〉 and operator Â:

〈2|Â " 1√
2

( − i 1
)




0 − 1
2 i!

1
2 i!




=
1√
2
(1
2 i! − 1

2!
)

= − 12! · 1√
2

( − i 1
)

which can be written as 〈2|Â = − 12!〈2|.

10.2.4 Properties of Matrix Representations of Operators

Many of the properties of operators can be expressed in terms of the properties of their
representative matrices. Most of these properties are straightforward, and will be pre-
sented below without comment.

Equality

Two operators are equal if their corresponding operator matrix elements are equal, i.e. Â =
B̂ if Amn = Bmn.

Unit and Zero Operator

The unit operator 1̂ is the operator such that 1̂|ψ〉 = |ψ〉 for all states |ψ〉. It has the the
matrix elements 1̂mn = δmn, i.e. the diagonal elements are all unity, and the off-diagonal
elements are all zero. The unit operator has the same form in all representations, i.e. irre-
spective of the choice of basis states. The zero operator 0̂ is the operator such that 0̂|ψ〉 = 0
for all states |ψ〉. Its matrix elements are all zero.
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Addition of Operators

Given two operators Â and B̂ with matrix elements Amn and Bmn, then the matrix elements
of their sum Ŝ = Â + B̂ are given by

S mn = Amn + Bmn. (10.34)

Multiplication by a Complex Number

If λ is a complex number, then the matrix elements of the operator Ĉ = λÂ are given by

Cmn = λAmn. (10.35)

Product of Operators

Given two operators Â and B̂ with matrix elements Amn and Bmn, then the matrix elements
of their product P̂ = ÂB̂ are given by

Pmn =
∑

k

AmkBkn (10.36)

i.e. the usual rule for the multiplication of two matrices. Matrix multiplication, and hence
operator multiplication, is not commutative, i.e. in general ÂB̂ ! B̂Â. The difference,
ÂB̂− B̂Â, known as the commutator of Â and B̂ and written [Â, B̂], can be readily evaluated
using the matrix representations of Â and B̂.

Ex 10.4 Three operators σ̂1, σ̂2 and σ̂3, known as the Pauli spin matrices, that occur in
the theory of spin half systems (and elsewhere) have the matrix representations
with respect to the {|+〉, |−〉} basis given by

σ̂1 "




0 1

1 0




σ̂2 "




0 −i

i 0




σ̂3 "




1 0

0 −1



.

The commutator [σ̂1, σ̂2] can be readily evaluated using these matrices:

[σ̂1, σ̂2] = σ̂1σ̂2 − σ̂2σ̂1

"




0 1

1 0







0 −i

i 0



−




0 −i

i 0







0 1

1 0




=




i 0

0 −i



−




−i 0

0 i




= 2i




1 0

0 −1
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The final matrix can be recognized as the representation of σ̂3, so that overall
we have shown that

[σ̂1, σ̂2] = 2iσ̂3.

Cyclic permutation of the subscripts then gives the other two commutators.

Functions of Operators

If we have a function f (x) which we can expand as a power series in x:

f (x) = a0 + a1x + a2x2 + · · · =
∞∑

n=0

anxn (10.37)

then we define f (Â), a function of the operator Â, to be also given by the same power
series, i.e.

f (Â) = a0 + a1Â + a2Â2 + · · · =
∞∑

n=0

anÂn. (10.38)

Once again, using the matrix representation of Â, it is possible, in certain cases, to work
out what the matrix representation is of f (Â).

Ex 10.5 One of the most important functions of an operator that is encountered is the
exponential function. To illustrate what this means, we will evaluate here the
exponential function exp(iφσ̂3) where σ̂1 is one of the Pauli spin matrices intro-
duced above, for which

σ̂1 "




0 1

1 0




and φ is a real number. Using the power series expansion of the exponential
function, we have

eiφσ̂1 =
∞∑

n=0

iφn

n!
σ̂n1.

It is useful to note that

σ̂23 "




0 1

1 0




2

=




1 0

0 1




i.e. σ̂21 = 1̂, the identity operator. Thus we can always write

σ̂2n1 = 1̂ σ̂2n+11 = σ̂1.

Thus, if we separate the infinite sum into two parts:

eiφσ̂1 =
∞∑

n=0

(iφ)2n

(2n)!
σ̂2n1 +

∞∑

n=0

(iφ)2n+1

(2n + 1)!
σ̂2n+11
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where the first sum is over all the even integers, and the second over all the odd
integers, we get

eiφσ̂1 = 1̂
∞∑

n=0

(−1)n φ
2n

(2n)!
+ iσ̂1

∞∑

n=0

(−1)n φ
2n+1

(2n + 1)!

= cos φ + iσ̂1 sin φ

"




cos φ 0

0 cos φ



+




0 i sin φ

i sin φ 0




=




cos φ i sin φ

i sin φ cos φ



.

Inverse of an Operator

Finding the inverse of an operator, given its matrix representation, amounts to finding the
inverse of the matrix, provided, of course, that the matrix has an inverse.

Ex 10.6 The inverse of exp(iφσ̂1) can be found by taking the inverse of its representative
matrix:

(
eiφσ̂1
)−1 "




cos φ i sin φ

i sin φ cos φ




−1

=




cos φ −i sin φ

−i sin φ cos φ



.

This inverse can be recognized as being just



cos φ −i sin φ

−i sin φ cos φ



=




cos(−φ) i sin(−φ)

i sin(−φ) cos(−φ)




which means that (
eiφσ̂1
)−1
= e−iφσ̂1

a perhaps unsurprising result in that it is a particular case of the fact that the
inverse of exp(Â) is just exp(−Â), exactly as is the case for the exponential
function of a complex variable.

10.2.5 Eigenvectors and Eigenvalues

Operators act on states to map them into other states. Amongst the possible outcomes of
the action of an operator on a state is to map the state into a multiple of itself:

Â|φ〉 = aφ|φ〉 (10.39)
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where |φ〉 is, in general, a complex number. The state |φ〉 is then said to be an eigenstate or
eigenket of the operator Â with aφ the associated eigenvalue. The fact that operators can
possess eigenstates might be thought of as a mathematical fact incidental to the physical
content of quantum mechanics, but it turns out that the opposite is the case: the eigen-
states and eigenvalues of various kinds of operators are essential parts of the physical
interpretation of the quantum theory, and hence warrant close study. Notationally, is is
often useful to use the eigenvalue associated with an eigenstate to label the eigenvector,
i.e. the notation

Â|a〉 = a|a〉. (10.40)

This notation, or minor variations of it, will be used almost exclusively here.

Determining the eigenvalues and eigenvectors of a given operator Â, occasionally referred
to as solving the eigenvalue problem for the operator, amounts to finding solutions to the
eigenvalue equation Â|φ〉 = aφ|φ〉. Written out in terms of the matrix representations of
the operator with respect to some set of orthonormal basis vectors {|ϕ〉; n = 1, 2, . . . }, this
eigenvalue equation is 



A11 A12 . . .

A21 A22 . . .

...
...







φ1

φ2

...




= a




φ1

φ2

...




. (10.41)

This expression is equivalent to a set of simultaneous, homogeneous, linear equations:



A11 − a A12 . . .

A21 A22 − a . . .
...

...







φ1

φ2

...




= 0 (10.42)

which have to be solved for the possible values for a, and the associated values for the
components φ1, φ2, . . . of the eigenvectors. The procedure is standard. The determinant
of coefficients must vanish in order to get non-trivial solutions for the components φ1, φ2,
. . . : ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

A11 − a A12 . . .

A21 A22 − a . . .
...

...

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0 (10.43)

which yields an equation known as the secular equation, or characteristic equation, that
has to be solved to give the possible values of the eigenvalues a. Once these are known,
they have to be resubstituted into Eq. (10.41) and the components φ1, φ2, . . . of the asso-
ciated eigenvectors determined. The details of how this is done properly belongs to a text
on linear algebra and will not be considered any further here, except to say that the eigen-
vectors are typically determined up to an unknown multiplicative constant. This constant
is usually fixed by the requirement that these eigenvectors be normalized to unity. In the
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case of repeated eigenvalues, i.e. when the characteristic polynomial has multiple roots
(otherwise known as degenerate eigenvalues), the determination of the eigenvectors is
made more complicated still. Once again, issues connected with these kinds of situations
will not be considered here.

In general, for a state space of finite dimension, it is found that the operator Â will have
one or more discrete eigenvalues a1, a2, . . . and associated eigenvectors |a1〉, |a2〉, . . . . The
collection of all the eigenvalues of an operator is called the eigenvalue spectrum of the
operator. Note also that more than one eigenvector can have the same eigenvalue. Such
an eigenvalue is said to be degenerate.

For the present we will be confining our attention to operators that have discrete eigen-
value spectra. Modifications needed to handle continuous eigenvalues will be introduced
later.

10.2.6 Hermitean Operators

Apart from certain calculational advantages, the representation of operators as matrices
makes it possible to introduce in a direct fashion Hermitean operators, already considered
in a more abstract way in Section 9.3.1, which have a central role to play in the physical
interpretation of quantum mechanics.

To begin with, suppose we have an operator Â with matrix elements Amn with respect to
a set of orthonormal basis states {|ϕn〉; n = 1, 2, . . . }. From the matrix representing this
operator, we can construct a new operator by taking the transpose and complex conjugate
of the original matrix:




A11 A12 A13 . . .

A21 A22 A23 . . .

A31 A32 A33 . . .

...
...

...




−→




A∗11 A∗21 A∗31 . . .

A∗12 A∗22 A∗32 . . .

A∗13 A∗23 A∗33 . . .

...
...

...




. (10.44)

The new matrix will represent a new operator which is obviously related to Â, which we
will call Â†, i.e.

Â† "




(A†)11 (A†)12 (A†)13 . . .

(A†)21 (A†)22 (A†)23 . . .

(A†)31 (A†)32 (A†)33 . . .

...
...

...




=




A∗11 A∗21 A∗31 . . .

A∗12 A∗22 A∗32 . . .

A∗13 A∗23 A∗33 . . .

...
...

...




. (10.45)

i.e.
〈ϕm|Â†|ϕn〉 = (〈ϕn|Â|ϕm〉)∗. (10.46)
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The new operator that we have created, Â†, can be recognized as the Hermitean adjoint of
Â. The Hermitean adjoint has a useful property which we can most readily see if we use
the matrix representation of the operator equation

Â|ψ〉 = |φ〉 (10.47)

which we earlier showed could be written as

φm =
∑

n

〈ϕm|Â|ϕn〉ψn. (10.48)

If we now take the complex conjugate of this expression we find

φ∗m =
∑

n

ψ∗n〈ϕn|Â†|ϕm〉 (10.49)

which we can write in row vector form as

(
φ∗1 φ∗2 . . .

)
=
(
ψ∗1 ψ∗2 . . .

)




(A†)11 (A†)12 . . .

(A†)21 (A†)22 . . .

...
...




(10.50)

which is the matrix version of
〈φ| = 〈ψ|Â†. (10.51)

In other words we have shown that if Â|ψ〉 = |φ〉, then 〈ψ|Â† = 〈φ|, a result that we used
earlier to motivate the definition of the Hermitean adjoint in the first place. Thus, there
are two ways to approach this concept: either through a general abstract argument, or in
terms of matrix representations of an operator.

Ex 10.7 Consider the operator Â which has the representation in some basis

Â "




1 i

0 −1



.

Then

Â† "




1 0

−i −1



.

To be noticed in this example is that Â ! Â†.

Ex 10.8 Now consider the operator

Â "




0 −i

i 0



.



Chapter 10 Representations of State Vectors and Operators 157

Then

Â† "




0 −i

i 0




i.e. Â = Â†.

This is an example of a situation in which Â and Â† are identical. In this case, the operator
is said to be selfadjoint, or Hermitean. Once again, we encountered this idea in a more
general context in Section 9.4.2, where it was remarked that Hermitean operators have
a number of very important properties which leads to their playing a central role in the
physical interpretation of quantum mechanics. These properties of Hermitean operators
lead to the identification of Hermitean operators as representing the physically observable
properties of a physical system, in a way that will be discussed in the next Chapter.


