
Chapter 11

Observables and Measurements in
Quantum Mechanics

Till now, almost all attention has been focussed on discussing the state of a quantum sys-
tem. As we have seen, this is most succinctly done by treating the package of information
that defines a state as if it were a vector in an abstract Hilbert space. Doing so provides
the mathematical machinery that is needed to capture the physically observed properties
of quantum systems. A method by which the state space of a physical system can be
set up was described in Section 8.4 wherein an essential step was to associate a set of
basis states of the system with the exhaustive collection of results obtained when mea-
suring some physical property, or observable, of the system. This linking of particular
states with particular measured results provides a way that the observable properties of a
quantum system can be described in quantum mechanics, that is in terms of Hermitean
operators. It is the way in which this is done that is the main subject of this Chapter.

11.1 Measurements in Quantum Mechanics

One of the most difficult and controversial problems in quantum mechanics is the so-
called measurement problem. Opinions on the significance of this problem vary widely.
At one extreme the attitude is that there is in fact no problem at all, while at the other
extreme the view is that the measurement problem is one of the great unsolved puzzles
of quantum mechanics. The issue is that quantum mechanics only provides probabili-
ties for the different possible outcomes in an experiment – it provides no mechanism by
which the actual, finally observed result, comes about. Of course, probabilistic outcomes
feature in many areas of classical physics as well, but in that case, probability enters the
picture simply because there is insufficent information to make a definite prediction. In
principle, that missing information is there to be found, it is just that accessing it may
be a practical impossibility. In contrast, there is no ‘missing information’ for a quantum
system, what we see is all that we can get, even in principle, though there are theo-
ries that say that this missing information resides in so-called ‘hidden variables’. But in
spite of these concerns about the measurement problem, there are some features of the
measurement process that are commonly accepted as being essential parts of the final
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story. What is clear is that performing a measurement always involves a piece of equip-
ment that is macroscopic in size, and behaves according to the laws of classical physics.
In Section 8.7, the process of decoherence was mentioned as playing a crucial role in
giving rise to the observed classical behaviour of macroscopic systems, and so it is not
surprising to find that decoherence plays an important role in the formulation of most
modern theories of quantum measurement. Any quantum measurement then appears to
require three components: the system, typically a microscopic system, whose properties
are to be measured, the measuring appara-
tus itself, which interacts with the system
under observation, and the environment sur-
rounding the apparatus whose presence sup-
plies the decoherence needed so that, ‘for
all practical purposes (FAPP)’, the appara-
tus behaves like a classical system, whose
output can be, for instance, a pointer on the
dial on the measuring apparatus coming to
rest, pointing at the final result of the mea-
surement, that is, a number on the dial. Of
course, the apparatus could produce an elec-
trical signal registered on an oscilloscope, or
bit of data stored in a computer memory, or
a flash of light seen by the experimenter as
an atom strikes a fluorescent screen, but it is
often convenient to use the simple picture of
a pointer.

Quantum
System S

Measuring
Apparatus
M
Surrounding Environment E

Figure 11.1: System S interacting with measur-
ing apparatusM in the presence of the surround-
ing environment E. The outcome of the measure-
ment is registered on the dial on the measuring ap-
paratus.

The experimental apparatus would be designed according to what physical property it is
of the quantum system that is to be measured. Thus, if the system were a single particle,
the apparatus could be designed to measure its energy, or its position, or its momentum or
its spin, or some other property. These measurable properties are known as observables.
But how do we know what it is that a particular experimental setup would be measuring?
The design would be ultimately based on classical physics principles, i.e., if the apparatus
were intended to measure the energy of a quantum system, then it would also measure
the energy of a classical system if a classical system were substituted for the quantum
system. In this way, the macroscopic concepts of classical physics can be transferred
to quantum systems. We will not be examining the details of the measurement process
in any great depth here. Rather, we will be more concerned with some of the general
characteristics of the outputs of a measurement procedure and how these general features
can be incorporated into the mathematical formulation of the quantum theory.

11.2 Observables and Hermitean Operators

One crucial feature of any output of a measurement is that the result is usually, or at least
can be, expressed as a real number. For instance, in the Stern-Gerlach experiment with
the magnetic field oriented in the z direction, the outcomes of the measurement are that a
spin-half particle will be observed to have a z component of spin with one or the other of
the values S z = ± 12!. It is here that we make a very important connection. We have been
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consistently saying that if an atom emerges in the S z = 1
2! beam, then we have assigned

the spin state |+〉 to the atom, and similarly we associate the outcome S z = − 12! with the
state |−〉. We therefore have a natural pairing off between measurement outcomes (two
real numbers, ± 12!) and the states |±〉. Moreover, as we have argued earlier in Section
8.2 these states are orthogonal in that if the atom is in state |+〉 for instance, there is
zero probability of observing it in state |−〉, i.e. 〈−|+〉 = 0: the two states are mutually
exclusive. Finally, we note that we never see an atom emerge from the apparatus in other
than the two beams associated with the two spins ± 12!. Thus, if an atom is prepared in an
arbitrary initial state |S 〉, the probability amplitude of finding it in some other state |S ′〉is

〈S ′|S 〉 = 〈S ′|+〉〈+|S 〉 + 〈S ′|−〉〈−|S 〉
which leads, by the cancellation trick to

|S 〉 = |+〉〈+|S 〉 + |−〉〈−|S 〉
which tells us that any spin state of the atom can be expressed as a linear combination of
the states |±〉. Thus the states |±〉 constitute a complete set of basis states for the state space
of the system. We therefore have at hand just the situation that applies to the eigenstates
and eigenvectors of a Hermitean operator as summarized in the following table:

Properties of a Hermitean Operator Properties of a Measurement of S z

The eigenvalues of a Hermitean operator
are all real.

Results of a measurement are real num-
bers.

Eigenvectors belonging to different eigen-
values are orthogonal.

States associated with different measure-
ment outcomes are mutually exclusive.

The eigenstates form a complete set of ba-
sis states for the state space of the system.

The states associated with all the possible
outcomes of a measurement form a com-
plete set of basis states for the state space
of the system.

It is therefore natural to associate with the quantity being measured here, that is S z, a Her-
mitean operator which we will write as Ŝ z such that Ŝ z has eigenstates |±〉 and associate
eigenvalues ± 12!, i.e.

Ŝ z|±〉 = ± 12!|±〉 (11.1)
so that, in the {|−〉, |+〉} basis

Ŝ z !




〈+|Ŝ z|+〉 〈+|Ŝ z|−〉

〈−|Ŝ z|+〉 〈−|Ŝ z|−〉




(11.2)

= 12!




1 0

0 −1



. (11.3)
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So, in this way, we actually construct a Hermitean operator to represent a particular mea-
surable property of a physical system. The term ‘observable’, while originally applied
to the physical quantity of interest, is also applied to the associated Hermitean operator.
Thus we talk, for instance, about the observable Ŝ z. To a certain extent we have used the
mathematical construct of a Hermitean operator to draw together in a compact fashion
ideas that we have been freely using in previous Chapters.

It is useful to note the distinction between a quantum mechanical observable and the
corresponding classical quantity. The latter quantity, say the position x of a particle,
represents a single possible value for that observable – though it might not be known,
it in principle has a definite, single value at any instant in time. In contrast, a quantum
observable such as S z is an operator which, through its eigenvalues, carries with it all the
values that the corresponding physical quantity could possibly have. In a certain sense,
this is a reflection of the physical state of affairs that pertains to quantum systems, namely
that when a measurement is made of a particular physical property of a quantum systems,
the outcome can, in principle, be any of the possible values that can be associated with
the observable, even if the experiment is repeated under identical conditions.

11.3 The Measurement Postulates

This procedure of associating a Hermitean operator with every observable property of a
quantum system can be readily generalized. The generalization takes a slightly different
form if the observable has a continuous range of possible values, such as position and
momentum, as against an observable with only discrete possible results. We will consider
the discrete case first.

11.3.1 Measurement of Observables with Discrete Values

Suppose we have an observable Q of a system that is found to have the values q1, q2, . . .
through an exhaustive series of measurements. If we furthermore represent by |q1〉, |q2〉,
. . . those states of the system for which we are guaranteed to get the results q1, q2, . . .
respectively on measuring Q, we can then claim the following:

1. The states {|qn〉; n = 1, 2, 3, . . .} form a complete set of orthonormal basis states for
the state space of the system.

That the states form a complete set of basis states means that any state |ψ〉 of the system
can be expressed as

|ψ〉 =
∑

n

cn|qn〉 (11.4)

while orthonormality means that 〈qn|qm〉 = δnm from which follows cn = 〈qn|ψ〉. The
completeness condition can then be written as

∑

n

|qn〉〈qn| = 1̂ (11.5)
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2. For the system in state |ψ〉, the probability of obtaining the result qn on measuring
Q is |〈qn|ψ〉|2 provided 〈ψ|ψ〉 = 1.

The completeness of the states |q1〉, |q2〉, . . . means that there is no state |ψ〉 of the system
for which 〈qn|ψ〉 = 0 for every state |qn〉. In other words, we must have

∑

n

|〈qn|ψ〉|2 " 0. (11.6)

Thus there is a non-zero probability for at least one of the results q1, q2, . . . to be observed
– if a measurement is made of Q, a result has to be obtained!

3. The observable Q is represented by a Hermitean operator Q̂ whose eigenvalues are
the possible results q1, q2, . . . of a measurement of Q, and the associated eigenstates
are the states |q1〉, |q2〉, . . . , i.e. Q̂|qn〉 = qn|qn〉. The name ‘observable’ is often
applied to the operator Q̂ itself.

The spectral decomposition of the observable Q̂ is then

Q̂ =
∑

n

qn|qn〉〈qn|. (11.7)

Apart from anything else, the eigenvectors of an observable constitute a set of basis states
for the state space of the associated quantum system.

For state spaces of finite dimension, the eigenvalues of any Hermitean operator are dis-
crete, and the eigenvectors form a complete set of basis states. For state spaces of infinite
dimension, it is possible for a Hermitean operator not to have a complete set of eigen-
vectors, so that it is possible for a system to be in a state which cannot be represented
as a linear combination of the eigenstates of such an operator. In this case, the operator
cannot be understood as being an observable as it would appear to be the case that the
system could be placed in a state for which a measurement of the assoociated observable
yielded no value! To put it another way, if a Hermitean operator could be constructed
whose eigenstates did not form a complete set, then we can rightfully claim that such an
operator cannot represent an observable property of the system.

While every observable of a system is represented by a Hermitean operator, and in prin-
ciple every Hermitean operator represents a possible observable of a system, it is not
always clear what observable property of a system an arbitrary Hermitean operator might
correspond to. In any case,

Finally, we add a further postulate concerning the state of the system immediately after a
measurement is made. This is the von Neumann projection postulate:

4. If on measuring Q for a system in state |ψ〉, a result qn is obtained, then the state of
the system immediately after the measurement is |qn〉.
This postulate can be rewritten in a different way by making use of the projection
operators introduced in Section ??. Thus, if we write

P̂n = |qn〉〈qn| (11.8)
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then the state of the system after the measurement, for which the result qn was
obtained, is

P̂n|ψ〉√
〈ψ|P̂n|ψ〉

=
P̂n|ψ〉√
|〈qn|ψ〉|2

(11.9)

where the term in the denominator is there to guarantee that the state after the mea-
surement is normalized to unity.

This last property is known as the von Neumann measurement postulate, or, as it is most
succinctly expressed in terms of projection operators, it is also referred to as the von Neu-
mann projection postulate. The postulate is named after John von Neumann, one of the
most famous mathematical physicists of the 20th century who was responsible, amongst
other achievements, for putting quantum theory on a sound mathematical footing.

This postulate is almost stating the obvious in that we name a state according to the
information that we obtain about it as a result of a measurement. But it can also be argued
that if, after performing a measurement that yields a particular result, we immediately
repeat the measurement, it is reasonable to expect that there is a 100% chance that the
same result be regained, which tells us that the system must have been in the associated
eigenstate. This was, in fact, the main argument given by von Neumann to support this
postulate. Thus, von Neumann argued that the fact that the value has a stable result upon
repeated measurement indicates that the system really has that value after measurement.

This postulate regarding the effects of measurement has always been a source of dis-
cussion and disagreement. This postulate is satisfactory in that it is consistent with the
manner in which the idea of an observable was introduced above, but it is not totally clear
that it is a postulate that can be applied to all measurement processes. The kind of mea-
surements wherein this postulate is satisfactory are those for which the system ‘survives’
the measuring process, which is certainly the case in the Stern-Gerlach experiments con-
sidered here. But this is not at all what is usually encountered in practice. For instance,
measuring the number of photons in an electromagnetic field inevitably involves detecting
the photons by absorbing them, i.e. the photons are destroyed. Thus we may find that if
n photons are absorbed, then we can say that there were n photons in the cavity, i.e. the
photon field was in state |n〉, but after the measuring process is over, it is in the state |0〉.
To cope with this fairly typical state of affairs it is necessary to generalize the notion of
measurement to allow for this – so-called generalized measurement theory. We will not
be considering this theory here.

11.3.2 Measurement of Observables with Continuous Values

In the case of measurements being made of an observable with a continuous range of
possible values such as position or momentum, or in some cases, energy, the above pos-
tulates need to modified somewhat. The modifications arise first, from the fact that the
eigenvalues are continuous, but also because the state space of the system will be of infi-
nite dimension.

To see why there is an issue here in the first place, we need to see where any of the
statements made in the case of an observable with discrete values comes unstuck. This
can best be seen if we consider a particular example, that of the position of a particle.



Chapter 11 Observables and Measurements in Quantum Mechanics 164

Measurement of Particle Position

If we are to suppose that a particle at a definite position x is to be assigned a state vector
|x〉, and if further we are to suppose that the possible positions are continuous over the
range (−∞,+∞) and that the associated states are complete, then we are lead to requiring
that any state |ψ〉 of the particle mut be expressible as

|ψ〉 =
∫ ∞

−∞
|x〉〈x|ψ〉 dx (11.10)

with the states |x〉 δ-function normalised, i.e.

〈x|x′〉 = δ(x − x′). (11.11)

The difficulty with this is that the state |x〉 has infinite norm: it cannot be normalized
to unity and hence cannot represent a possible physical state of the system. This makes
it problematical to introduce the idea of an observable – the position of the particle –
that can have definite values x associated with unphysical states |x〉. There is a further
argument about the viability of this idea, at least in the contect of measuring the position
of a particle, which is to say that if the position were to be precisely defined at a particular
value, this would mean, by the uncertainty principle ∆x∆p ≥ 1

2! that the momentum of
the particle would have infinite uncertainty, i.e. it could have any value from −∞ to∞. It
is a not very difficult exercise to show that to localize a particle to a region of infinitesimal
size would require an infinite amount of work to be done, so the notion of preparing a
particle in a state |x〉 does not even make physical sense.
The resolution of this impasse involves recognizing that the measurement of the position
of a particle is, in practice, only ever done to within the accuracy, δx say, of the measuring
apparatus. In other words, rather than measuring the precise position of a particle, what
is measured is its position as lying somewhere in a range (x − 1

2δx, x +
1
2δx). We can

accommodate this situation within the theory by defining a new set of states that takes
this into account. This could be done in a number of ways, but the simplest is to suppose
we divide the continuous range of values of x into intervals of length δx, so that the
nth segment is the interval ((n − 1)δx, nδx) and let xn be the point in the middle of the
nth interval, i.e. xn = (n − 1

2 )δx. We then say that the particle is in the state |xn〉 if the
measuring apparatus indicates that the position of the particle is in the nth segment.

In this manner we have replaced the continuous case by the discrete case, and we can
now proceed along the lines of what was presented in the preceding Section. Thus we can
introduce an observable x∆x that can be measured to have the values {xn; n = 0,±1,±2 . . .},
with |xn〉 being the state of the particle for which xδx has the value xn. We can then
construct a Hermitean operator x̂δx with eigenvalues {xn; n = 0,±1,±2 . . .} and associated
eigenvectors {|xn〉; n = 0,±1,±2, . . .} such that

x̂δx|xn〉 = xn|xn〉. (11.12)

The states {|xn; n = 0,±1,±2, . . .〉} will form a complete set of orthonormal basis states
for the particle, so that any state of the particle can be written

|ψ〉 =
∑

n

|xn〉〈xn|ψ〉 (11.13)
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with 〈xn|xm〉 = δnm. The observable x̂δx would then be given by

x̂δx =
∑

n

xn|xn〉〈xn|. (11.14)

Finally, if a measurement of xδx is made and the result xn is observed, then the immediate
post-measurement state of the particle will be

P̂n|ψ〉√
〈ψ|P̂n|ψ〉

(11.15)

where P̂n is the projection operator

P̂n = |xn〉〈xn|. (11.16)

To relate all this back to the continuous case, it is then necessary to take the limit, in some
sense, of δx→ 0. This limiting process has already been discussed in Section 8.6.2, in an
equivalent but slightly different model of the continuous limit. The essential points will
be repeated here.

Returning to Eq. (11.13), we can define a new, unnormalized state vector |xn〉 by

|xn〉 =
|xn〉√
δx

(11.17)

The states |xn〉 continue to be eigenstates of x̂δx, i.e.

x̂δx|xn〉 = xn|xn〉 (11.18)

as the factor 1/
√
δx merely renormalizes the length of the vectors. Thus these states |xn〉

continue to represent the same physical state of affairs as the normalized state, namely
that when in this state, the particle is in the interval (xn − 1

2δx, xn +
1
2δx).

In terms of these unnormalized states, Eq. (11.13) becomes

|ψ〉 =
∑

n

|xn〉 〈xn|ψ〉δx. (11.19)

If we let δx→ 0, the discrete points xn = (n − 1
2 )∆x will eventually form a continuum. In

particular, any point x in this continuum will be the limit of a sequence of discrete points
xn for which δx → 0 and n → ∞ such that xn = (n − 1

2 )δx remains equal to x. Further, in
this limit the sum in Eq. (11.19) will define an integral with respect to x:

|ψ〉 =
∫ ∞

−∞
|x〉〈x|ψ〉 dx (11.20)

where we have introduced the symbol |x〉 to represent the δx→ 0 limit of |xn〉 i.e.

|x〉 = lim
δx→0

|xn〉√
δx
. (11.21)
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This then is the idealized state of the particle for which its position is specified to within
a vanishingly small interval around x as δx approaches zero. From Eq. (11.20) we can
extract the completeness relation for these states

∫ ∞

−∞
|x〉〈x| dx = 1̂. (11.22)

This is done at a cost, of course. By the same arguments as presented in Section 8.6.2, the
new states |x〉 are δ-function normalized, i.e. 〈x|x′〉 = δ(x − x′), and, in particular, are of
infinite norm, that is, they cannot be normalized to unity and so do not represent physical
states of the particle.

Having introduced these idealized states, we can investigate some of their further prop-
ertues and uses. The first and probably the most important is that it gives us the means
to write down the probability of finding a particle in any small region in space. Thus,
provided the state |ψ〉 is normalized to unity, Eq. (11.20) leads to

〈ψ|ψ〉 = 1 =
∫ ∞

−∞
|〈x|ψ〉|2 dx (11.23)

which can be interpreted as saying that the total probability of finding the particle some-
where in space is unity. More particularly, we also conclude that |〈x|ψ〉|2 dx is the proba-
bility of finding the position of the particle to be in the range (x, x + dx).

If we now turn to Eq. (11.14) and rewrite it in terms of the unnormalized states we have

x̂δx =
∑

n

xn|xn〉 〈xn|δx (11.24)

so that in a similar way to the derivation of Eq. (11.20) this gives, in the limit of δx → 0,
the new operator x̂, i.e.

x̂ =
∫ ∞

−∞
x|x〉〈x| dx. (11.25)

This then leads to the δx→ 0 limit of the eigenvalue equation for x̂δx, Eq. (11.18) i.e.

x̂|x〉 = x|x〉 (11.26)

a result that also follows from Eq. (11.25) on using the δ-function normalization condition.
This operator x̂ therefore has as eigenstates the complete set of δ-function normalized
states {|x〉;−∞ < x < ∞} with associated eigenvalues x and can be looked on as being
the observable corresponding to an idealized, precise measurement of the position of a
particle.

While these states |x〉 can be considered idealized limits of the normalizable states |xn〉 it
must always be borne in mind that these are not physically realizable states – they are not
normalizable, and hence are not vectors in the state space of the system. They are best
looked on as a convenient fiction with which to describe idealized situations, and under
most circumstances these states can be used in much the same way as discrete eigenstates.
Indeed it is one of the benefits of the Dirac notation that a common mathematical language
can be used to cover both the discrete and continuous cases. But situations can and do
arise in which the cavalier use of these states can lead to incorrect or paradoxical results.
We will not be considering such cases here.
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The final point to be considered is the projection postulate. We could, of course, idealize
this by saying that if a result x is obtained on measuring x̂, then the state of the system
after the measurement is |x〉. But given that the best we can do in practice is to measure
the position of the particle to within the accuracy of the measuring apparatus, we cannot
really go beyond the discrete case prescription given in Eq. (11.15) except to express it
in terms of the idealized basis states |x〉. So, if the particle is in some state |ψ〉, we can
recognize that the probability of getting a result x with an accuracy of δx will be given by

∫ x+12 δx

x−12 δx
|〈x′|ψ〉|2dx′ =

∫ x+12 δx

x−12 δx
〈ψ|x′〉〈x′|ψ〉dx′

= 〈ψ|
[ ∫ x+12 δx

x−12 δx
|x′〉〈x′|dx′

]
|ψ〉 = 〈ψ|P̂(x, δx)|ψ〉 (11.27)

where we have introduced an operator P̂(x, δx) defined by

P̂(x, δx) =
∫ x+ 12 δx

x− 12 δx
|x′〉〈x′|dx′. (11.28)

We can readily show that this operator is in fact a projection operator since

[
P̂(x, δx)

]2
=

∫ x+ 12 δx

x−12 δx
dx′
∫ x+12 δx

x−12 δx
dx′′|x′〉〈x′|x′′〉〈x′′|

=

∫ x+12 δx

x−12 δx
dx′
∫ x+12 δx

x−12 δx
dx′′|x′〉δ(x′ − x′′)〈x′′|

=

∫ x+12 δx

x−12 δx
dx′|x′〉〈x′|

=P̂(x, δx). (11.29)

This suggests, by comparison with the corresponding postulate in the case of discrete
eigenvalues, that if the particle is initially in the state |ψ〉, then the state of the particle
immmediately after measurement be given by

P̂(x, δx)|ψ〉
√
〈ψ|P̂(x, δx)|ψ〉

=

∫ x+12 δx
x−12 δx

|x′〉〈x′|ψ〉dx′
√
∫ x+ 12 δx
x− 12 δx

|〈x′|ψ〉|2dx′
(11.30)

It is this state that is taken to be the state of the particle immediately after the measurement
has been performed, with the result x being obtained to within an accuracy δx.

Further development of these ideas is best done in the language of generalized measure-
ments where the projection operator is replaced by an operator that more realistically
represents the outcome of the measurement process. We will not be pursuing this any
further here.
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At this point, we can take the ideas developed for the particular case of the measurement
of position and generalize them to apply to the measurement of any observable quan tity
with a continuous range of possible values. The way in which this is done is presented in
the following Section.

General Postulates for Continuous Valued Observables

Suppose we have an observable Q of a system that is found, for instance through an
exhaustive series of measurements, to have a continuous range of values θ1 < q < θ2.
In practice, it is not the observable Q that is measured, but rather a discretized version
in which Q is measured to an accuracy ∆q determined by the measuring device. If we
represent by |q〉 the idealized state of the system in the limit ∆q → 0, for which the
observable definitely has the value q, then we claim the following:

1. The states {|q〉; θ1 < q < θ2} form a complete set of δ-function normalized basis
states for the state space of the system.

That the states form a complete set of basis states means that any state |ψ〉 of the system
can be expressed as

|ψ〉 =
∫ θ2

θ1

c(q)|q〉 (11.31)

while δ-function normalized means that 〈q|q′〉 = δ(q−q′) from which follows c(q) = 〈q|ψ〉
so that

|ψ〉 =
∫ θ2

θ1

|q〉〈q|ψ〉 dq. (11.32)

The completeness condition can then be written as
∫ θ2

θ1

|q〉〈q| dq = 1̂ (11.33)

2. For the system in state |ψ〉, the probability of obtaining the result q lying in the
range (q, q + dq) on measuring Q is |〈q|ψ〉|2dq provided 〈ψ|ψ〉 = 1.

Completeness means that for any state |ψ〉 it must be the case that
∫ θ2

θ1

|〈q|ψ〉|2dq " 0 (11.34)

i.e. there must be a non-zero probability to get some result on measuring Q.

3. The observable Q is represented by a Hermitean operator Q̂ whose eigenvalues are
the possible results {q; θ1 < q < θ2}, of a measurement of Q, and the associated
eigenstates are the states {|q〉; θ1 < q < θ2}, i.e. Q̂|q〉 = q|q〉. The name ‘observable’
is often applied to the operator Q̂ itself.
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The spectral decomposition of the observable Q̂ is then

Q̂ =
∫ θ2

θ1

q|q〉〈q| dq. (11.35)

As in the discrete case, the eigenvectors of an observable constitute a set of basis states
for the state space of the associated quantum system.

A more subtle difficulty is now encountered if we turn to the von Neumann postulate con-
cerning the state of the system after a measurement is made. If we were to transfer the
discrete state postulate directly to the continuous case, we would be looking at proposing
that obtaining the result q in a measurement of Q̂ would mean that the state after the mea-
surement is |q〉. This is a state that is not permitted as it cannot be normalized to unity.
Thus we need to take account of the way a measurement is carried out in practice when
considering the state of the system after the measurement. Following on from the partic-
ular case of position measurement presented above, we will suppose that Q is measured
with a device of accuracy ∆q. This leads to the following general statement of the von
Neumann measurement postulate for continuous eigenvalues:

4. If on performing a measurement of Q with an accuracy ∆q, the result q is obtained,
then the system will end up in the state

P̂(q,∆q)|ψ〉
√
〈ψ|P̂(q,∆q)|ψ〉

(11.36)

where

P̂(q,∆q) =
∫ q+ 12∆q

q−12∆q
|q′〉〈q′|dq′. (11.37)

Even though there exists this precise statement of the projection postulate for continuous
eigenvalues, it is nevertheless a convenient fiction to assume that the measurement of an
observable Q with a continuous set of eigenvalues will yield one of the results q with the
system ending up in the state |q〉 immediately afterwards. While this is, strictly speaking,
not really correct, it can be used as a convenient shorthand for the more precise statement
given above.

As mentioned earlier, further development of these ideas is best done in the language of
generalized measurements.

11.3.3 State Vector Collapse

The von Neumann postulate is quite clearly stating that as a consequence of a measure-
ment, the state of the system undergoes a discontinuous change of state, i.e. |ψ〉 → |qn〉
if the result qn is obtained on performing a measurement of an observable Q. This in-
stantaneous change in state is known as ‘the collapse of the state vector’. This conjures
up the impression that the process of measurement necessarily involves a major physical
disruption of the state of a system – one moment the system is in a state |ψ〉, the next it
is forced into a state |qn〉. However, the picture that is more recently emerging is that the
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change of state is nothing more benign than being an updating, through observation, of
the knowledge we have of the state of a system as a consequence of the outcome of a mea-
surement that could have proceeded gently over a long period of time. This emphasizes
the notion that quantum states are as much states of knowledge as they are physical states.
Einstein-Rosen-Podolsky type experiments also show that this updating of the observers
knowledge may or may not be associated with any physical disruption to the system itself.

11.4 Examples of Observables

There are many observables of importance for all manner of quantum systems. Below,
some of the important observables for a single particle system are described. As the
eigenstates of any observable constitutes a set of basis states for the state space of the
system, these basis states can be used to set up representations of the state vectors and
operators as column vectors and matrices. These representations are named according to
the observable which defines the basis states used. Moreover, since there are in general
many observables associated with a system, there are correspondingly many possible ba-
sis states that can be so constructed. Of course, there are an infinite number of possible
choices for the basis states of a vector space, but what this procedure does is pick out
those basis states which are of most immediate physical significance.

The different possible representations are useful in different kinds of problems, as dis-
cussed briefly below. It is to be noted that the term ‘observable’ is used both to describe
the physical quantity being measured as well as the operator itself that corresponds to the
physical quantity.

11.4.1 Position of a particle (in one dimension)

In one dimension, the position x of a particle can range over the values −∞ < x < ∞.
Thus the Hermitean operator x̂ corresponding to this observable will have eigenstates |x〉
and associated eigenvalues x such that

x̂|x〉 = x|x〉, −∞ < x < ∞. (11.38)

As the eigenvalues cover a continuous range of values, the completeness relation will be
expressed as an integral:

|ψ〉 =
∫ ∞

−∞
|x〉〈x|ψ〉 (11.39)

where 〈x|ψ〉 = ψ(x) is the wave function associated with the particle. Since there is a
continuosly infinite number of basis states |x〉, these states are delta-function normalized:

〈x|x′〉 = δ(x − x′). (11.40)

The operator itself can be expressed as

x̂ =
∫ ∞

−∞
x|x〉〈x| dx. (11.41)
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In many of the examples that have been used in earlier Chapters, the idea was used of a
molecular ion such as the O−2 ion in which the position of the electron was assumed to
have only discrete values, namely at the positions of the atoms in the molecule. Thus,
in the case of the O−2 ion, there were only two possible positions for the electron in this
model, on the oxygen atom at x = a or on the oxygen atom at x = −a. In this case, the
position operator x̂ has only two eigenvalues, x = ±a, and two corresponding eigenstates
| ± a〉 so that the spectral decomposition of this observable is then

x̂ = a| + a〉〈+a| − a| − a〉〈−a|. (11.42)

In this case, the position operator is best regarded as an ‘approximate’ position operator.

The Position Representation The wave function is, of course, just the components
of the state vector |ψ〉 with respect to the position eigenstates as basis vectors. Hence,
the wave function is often referred to as being the state of the system in the position
representation. The probability amplitude 〈x|ψ〉 is just the wave function, written ψ(x) and
is such that |ψ(x)|2dx is the probability of the particle being observed to have a momentum
in the range x to x + dx.

The one big difference here as compared to the discussion in Chapter 10 is that the basis
vectors here are continuous, rather than discrete, so that the representation of the state
vector is not a simple column vector with discrete entries, but rather a function of the
continuous variable x. Likewise, the operator x̂ will not be represented by a matrix with
discrete entries labelled, for instance, by pairs of integers, but rather it will be a function
of two continuous variables:

〈x|x̂|x′〉 = xδ(x − x′). (11.43)

The position representation is used in quantum mechanical problems where it is the po-
sition of the particle in space that is of primary interest. For instance, when trying to
determine the chemical properties of atoms and molecules, it is important to know how
the electrons in each atom tend to distribute themselves in space in the various kinds of
orbitals as this will play an important role in determining the kinds of chemical bonds
that will form. For this reason, the position representation, or the wave function, is the
preferred choice of representation. When working in the position representation, the wave
function for the particle is found by solving the Schrödinger equation for the particle.

11.4.2 Momentum of a particle (in one dimension)

As for position, the momentum p is an observable which can have any value in the range
−∞ < p < ∞ (this is non-relativistic momentum). Thus the Hermitean operator p̂ will
have eigenstates |p〉 and associated eigenvalues p:

p̂|p〉 = p|p〉, −∞ < p < ∞. (11.44)

As the eigenvalues cover a continuous range of values, the competeness relation will also
be expressed as an integral:

|ψ〉 =
∫ +∞

−∞
|p〉〈p|ψ〉 dp (11.45)
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where the basis states are delta-function normalized:

〈p|p′〉 = δ(p − p′). (11.46)

The operator itself can be expressed as

p̂ =
∫ ∞

−∞
p|p〉〈p| dp. (11.47)

Momentum Representation If the state vector is represented in component form with
respect to the momentum eigenstates as basis vectors, then this is said to be the mo-
mentum representation. The probability amplitude 〈p|ψ〉 is sometimes referred to as the
momentum wave function, written ψ̃(p) and is such that |ψ̃(p)|2dp is the probability of the
particle being observed to have a momentum in the range p to p+ dp. It turns out that the
momentum wave function and the position wave function are Fourier transform pairs, a
result that is shown later in Chapter ??.

The momentum representation is preferred in problems in which it is not so much where
a particle might be in space that is of interest, but rather how fast it is going and in what
direction. Thus, the momentum representation is often to be found when dealing with
scattering problems in which a particle of well defined momentum is directed towards a
scattering centre, e.g. an atomic nucleus, and the direction in which the particle is scat-
tered, and the momentum and/or energy of the scattered particle are measured, though
even here, the position representation is used more often than not as it provides a mental
image of the scattering process as waves scattering off an obstacle. Finally, we can also
add that there is an equation for the momentum representation wave function which is
equivalent to the Schrödinger equation.

11.4.3 Energy of a Particle

According to classical physics, the energy of a particle is given by

E =
p2

2m
+ V(x) (11.48)

where the first term on the RHS is the kinetic energy, and the second term V(x) is the
potential energy of the particle. In quantum mechanics, it can be shown, by a proce-
dure known as canonical quantization, that the energy of a particle is represented by a
Hermitean operator known as the Hamiltonian, written Ĥ, which can be expressed as

Ĥ =
p̂2

2m
+ V(x̂) (11.49)

where the classical quantities p and x have been replaced by the corresponding quantum
operators. The term Hamiltonian is derived from the name of the mathematician Rowan
Hamilton who made significant contributions to the theory of mechanics, in particular
introducing the quantity we have simply called the total energy E, but usually written H,
and called the Hamiltonian, if the total energy is expressed in terms of momentum and
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position variables, as here. Through his work, a connection between the mathematical de-
scription of classical optics and the motion of particles could be established, a connection
that Schrödinger exploited in deriving his wave equation.

We have seen, at least for a particle in an infinite potential well (see Section 5.3), that the
energies of a particle depend on !. However there is no ! in this expression for Ĥ, so it is
not obvious how this expression can be ‘quantum mechanical’. The quantum mechanics
comes about through the properties of the position and momentum operators, specifically,
these two operators do not commute. In fact, we find that

x̂ p̂ − p̂x̂ = [x̂, p̂] = i! (11.50)

and it is this failure to commute that injects ‘quantum mechanics’ into the operator asso-
ciated with the energy of a particle.

Depending on the form of V(x̂), the Hamiltonian can have various possible eigenvalues.
For instance, if V(x̂) = 0 for 0 < x < L and is infinite otherwise, then we have the
Hamiltonian of a particle in an infinitely deep potential well, or equivalently, a particle in
a (one-dimensional) box with impenetrable walls. This problem was dealt with in Section
5.3 using the methods of wave mechanics, where it was found that the energy of the
particle was limited to the values

En =
n2!2π2
2mL2

, n = 1, 2, . . . .

Thus, in this case, the Hamiltonian has eigenvalues En given by Eq. (11.4.3). If we write
the associated energy eigenstates as |En〉, the eigenvalue equation is then

Ĥ|En〉 = En|En〉. (11.51)

The wave function 〈x|En〉 associated with the energy eigenstate |En〉 was also derived in
Section 5.3 and is given by

ψn(x) = 〈x|En〉 =
√
2
L
sin(nπx/L) 0 < x < L

= 0 x < 0, x > L. (11.52)

Another example is that for which V(x̂) = 1
2kx̂

2, i.e. the simple harmonic oscillator poten-
tial. In this case, we find that the eigenvalues of Ĥ are

En = (n + 1
2 )!ω, n = 0, 1, 2, . . . (11.53)

where ω =
√
k/m is the natural frequency of the oscillator. The Hamiltonian is an ob-

servable of particular importance in quantum mechanics. As will be discussed in the next
Chapter, it is the Hamiltonian which determines how a system evolves in time, i.e. the
equation of motion of a quantum system is expressly written in terms of the Hamilto-
nian. In the position representation, this equation is just the time dependent Schrödinger
equation.
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The Energy Representation If the state of the particle is represented in component
form with respect to the energy eigenstates as basis states, then this is said to be the
energy representation. In contrast to the position and momentum representations, the
components are often discrete. The energy representation is useful when the system under
study can be found in states with different energies, e.g. an atom absorbing or emitting
photons, and consequently making transitions to higher or lower energy states. The energy
representation is also very important when it is the evolution in time of a system that is of
interest.

11.4.4 Observables for a Single Mode EM Field

A somewhat different example from those presented above is that of the field inside a
single mode cavity (see pp 95, 122). In this case, the basis states of the electromagnetic
field are the number states {|n〉, n = 0, 1, 2, . . .} where the state |n〉 is the state of the field
in which there are n photons present.

Number Operator From the annihilation operator â (Eq. (9.56)) and creation operator
â† (Eq. (9.71)) for this field, defined such that

â|n〉 =
√
n|n − 1〉, â|0〉 = 0

â†|n〉 =
√
n + 1|n + 1〉

we can construct a Hermitean operator N̂ defined by

N̂ = â†â (11.54)

which can be readily shown to be such that

N̂ |n〉 = n|n〉. (11.55)

This operator is an observable of the system of photons. Its eigenvalues are the integers
n = 0, 1, 2, . . . which correspond to the possible results obtained when the number of
photons in the cavity are measured, and |n〉 are the corresponding eigenstates, the number
states, representing the state in which there are exactly n photons in the cavity. This
observable has the spectral decomposition

N̂ =
∞∑

n=0

n|n〉〈n|. (11.56)

Hamiltonian If the cavity is designed to support a field of frequency ω, then each pho-
ton would have the energy !ω, so that the energy of the field when in the state |n〉 would
be n!ω. From this information we can construct the Hamiltonian for the cavity field. It
will be

Ĥ = !ωN̂. (11.57)
A more rigorous analysis based on ‘quantizing’ the electromagnetic field yields an ex-
pression Ĥ = !ω(N̂ + 1

2 ) for the Hamiltonian. The additional term
1
2!ω is known as the

zero point energy of the field. Its presence is required by the uncertainty principle, though
it apparently plays no role in the dynamical behaviour of the cavity field as it merely
represents a shift in the zero of energy of the field.
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Electric Field A physical meaning can be given to the annihilation and creation opera-
tors defined above in terms of observables of the field inside the cavity. The essential point
to note is that the Hamiltonian of the cavity field is given in Eq. (11.57) by Ĥ = !ωâ†â
which can be compared with the classical expression for the energy of the single mode
EM field inside the cavity, that is H = 1

2ε0E∗EV whereV is the volume of the cavity, and
where the classical field is assumed to be a uniform standing wave of complex amplitude
Ee−iωt. The electric field E is then simply the real part of E. We therefore want to establish
a correspondence between these two expressions, i.e.

!ωâ†â←→ 1
2ε0E∗EV

in order to give some sort of physical interpretation of â, apart from its interpretation as a
photon annihilation operator. We can do this by reorganising the various terms so that the
correspondence looks like


e
−iφ

√
2!ω
Vε0

â†




e

iφ

√
2!ω
Vε0

â


←→ E

∗E

where exp(iφ) is an arbitrary phase factor, i.e. it could be chosen to have any value and
the correspondence would still hold. By convention it is taken to be i. The most obvious
next step is to identify an electric field operator Ê by

Ê = i
√
2!ω
Vε0

â

so that we get the correspondence Ê†Ê←→ E∗E.
We can note that the operator Ê is still not Hermitean, but recall that the classical electric
field was obtained from the real part of E, so that we can define a Hermitean electric field
operator by

Ê = 1
2
[Ê + Ê†] = i

√
!ω
2Vε0

[
â − â†]

to complete the picture. In this way we have identified a new observable for the field inside
the cavity, the electric field operator. In contrast to the number operator, this observable
can be shown to have a continuous range of eigenvalues, −∞ < E < ∞.

11.5 The O−2 Ion: An Example of a Two-State System

In order to illustrate the ideas developed in the preceding sections, we will see how it is
possible, firstly, how to ‘construct’ the Hamiltonian of a simple system using simple argu-
ments, then to look at the consequences of performing measurements of two observables
for this system. The system we will consider is the O−2 ion, discussed in Section 8.4.
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11.5.1 The Position Operator

This system can be found in two states |±a〉, where ±a are the positions of the electron on
one or the other of the oxygen atoms. Thus we have the completeness relation for these
basis states:

| + a〉〈+a| + | − a〉〈−a| = 1̂. (11.58)

The position operator x̂ of the electron is such that

x̂| ± a〉 = ±a| ± a〉 (11.59)

which leads to
x̂ = a| + a〉〈+a| − a| − a〉〈−a|. (11.60)

The position operator can be written in the position representation as a matrix:

x̂ !




〈+a|x̂| + a〉 〈+a|x̂| − a〉

〈−a|x̂| + a〉 〈−a|x̂| − a〉



=




a 0

0 −a



. (11.61)

The state space of the system has been established as having dimension 2, so any other
observable of the system can be represented as a 2×2 matrix. We will use this to construct
the possible form of the Hamiltonian for this system.

11.5.2 Contructing the Hamiltonian

The Hamiltonian of the ion in the position representation will be

Ĥ !




〈+a|Ĥ| + a〉 〈+a|Ĥ| − a〉

〈−a|Ĥ| + a〉 〈−a|Ĥ| − a〉



. (11.62)

Since there is perfect symmetry between the two oxygen atoms, we must conclude that
the diagonal elements of this matrix must be equal i.e.

〈+a|Ĥ| + a〉 = 〈−a|Ĥ| − a〉 = E0. (11.63)

We further know that the Hamiltonian must be Hermitean, so the off-diagonal elements
are complex conjugates of each other. Hence we have

Ĥ !




E0 V

V∗ E0




(11.64)

or, equivalently

Ĥ = E0| + a〉〈+a| + V | + a〉〈−a| + V∗| − a〉〈+a| + E0| − a〉〈−a|. (11.65)
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Rather remarkably, we have at hand the Hamiltonian for the system with the barest of
physical information about the system.

In the following we shall assume V = −A and that A is a real number. The physical
content of the results are not changed by doing this, and the results are a little easier to
write down. First we can determine the eigenvalues of Ĥ by the usual method. If we write
Ĥ|E〉 = E|E〉, and put |E〉 = α| + a〉 + β| − a〉, this becomes, in matrix form




E0 − E −A

−A E0 − E







α

β



= 0. (11.66)

The characteristic equation yielding the eigenvalues is then
∣∣∣∣∣∣∣∣∣∣∣

E0 − E −A

−A E0 − E

∣∣∣∣∣∣∣∣∣∣∣
= 0. (11.67)

Expanding the determinant this becomes

(E0 − E)2 − A2 = 0 (11.68)

with solutions
E1 = E0 + A E2 = E0 − A. (11.69)

Substituting each of these two values back into the original eigenvalue equation then gives
the equations for the eigenstates. We find that

|E1〉 =
1√
2
(| + a〉 − | − a〉) ! 1√

2




1

−1




(11.70)

|E2〉 =
1√
2
(| + a〉 + | − a〉) ! 1√

2




1

1




(11.71)

where each eigenvector has been normalized to unity. Thus we have constructed the
eigenstates and eigenvalues of the Hamiltonian of this system. We can therefore write the
Hamiltonian as

Ĥ = E1|E1〉〈E1| + E2|E2〉〈E2| (11.72)

which is just the spectral decomposition of the Hamiltonian.

We have available two useful sets of basis states: the basis states for the position repre-
sentation {|+ a〉, |− a〉} and the basis states for the energy representation, {|E1〉, |E2〉}. Any
state of the system can be expressed as linear combinations of either of these sets of basis
states.
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11.5.3 Measurements of Energy and Position

Suppose we prepare the O−2 ion in the state

|ψ〉 =1
5
[
3| + a〉 + 4| − a〉]

!
1
5




3

4




(11.73)

and we measure the energy of the ion. We can get two possible results of this measure-
ment: E1 or E2. We will get the result E1 with probability |〈E1|ψ〉|2, i.e.

〈E1|ψ〉 =
1√
2

(
1 −1

)
· 1
5




3

4



= − 1

5
√
2

(11.74)

so that
|〈E1|ψ〉|2 = 0.02 (11.75)

and similarly

〈E2|ψ〉 =
1√
2

(
1 1
)
· 1
5




3

4



=

7
5
√
2

(11.76)

so that
|〈E2|ψ〉|2 = 0.98. (11.77)

It is important to note that if we get the result E1, then according to the von Neumann
postulate, the system ends up in the state |E1〉, whereas if we got the result E2, then the
new state is |E2〉.
Of course we could have measured the position of the electron, withthe two possible
outcomes ±a. In fact, the result +a will occur with probability

|〈+a|ψ〉|2 = 0.36 (11.78)

and the result −a with probability

|〈−a|ψ〉|2 = 0.64. (11.79)

Once again, if the outcome is +a then the state of the system after the measurement is
| + a〉, and if the result −a is obtained, then the state after the measurement is | − a〉.
Finally, we can consider what happens if we were to do a sequence of measurements, first
of energy, then position, and then energy again. Suppose the system is initially in the state
|ψ〉, as above, and the measurement of energy gives the result E1. The system is now in
the state |E1〉. If we now perform a measurement of the position of the electron, we can
get either of the two results ±a with equal probability:

|〈±a|E1〉|2 = 0.5. (11.80)
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Suppose we get the result +a, so the system is now in the state | + a〉 and we remeasure
the energy. We find that now it is not guaranteed that we will regain the result E1 obtained
in the first measurement. In fact, we find that there is an equal chance of getting either E1
or E2:

|〈E1| + a〉|2 = |〈E2| + a〉|2 = 0.5. (11.81)

Thus we must conclude that the intervening measurement of the position of the electron
has scrambled the energy of the system. In fact, if we suppose that we get the result E2
for this second energy measurement, thereby placing the system in the state |E2〉 and we
measure the position of the electron again, we find that we will get either result ±a with
equal probability again! The measurement of energy and electron position for this system
clearly interfere with one another. It is not possible to have a precisely defined value
for both the energy of the system and the position of the electron: they are said to be
incompatible observables. This is a topic we will discuss in more detail in a later Chapter.


