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Chapter 1

Introduction: What is Relativity?

U the end of the 19th century it was believed that Newton’s three Laws of Motion and
the associated ideas about the properties of space and time provided a basis on which the

motion of matter could be completely understood. However, the formulation by Maxwell of a
unified theory of electromagnetism disrupted this comfortable state of affairs – the theory was
extraordinarily successful, yet at a fundamental level it seemed to be inconsistent with certain
aspects of the Newtonian ideas of space and time. Ultimately, a radical modification of these latter
concepts, and consequently of Newton’s equations themselves, was found to be necessary. It was
Albert Einstein who, by combining the experimental results and physical arguments of others with
his own unique insights, first formulated the new principles in terms of which space, time, matter
and energy were to be understood. These principles, and their consequences constitute the Special
Theory of Relativity. Later, Einstein was able to further develop this theory, leading to what is
known as the General Theory of Relativity. Amongst other things, this latter theory is essentially
a theory of gravitation.

Relativity (both the Special and General theories), quantum mechanics, and thermodynamics are
the three major theories on which modern physics is based. What is unique about these three
theories, as distinct from say the theory of electromagnetism, is their generality. Embodied in these
theories are general principles which all more specialized or more specific theories are required
to satisfy. Consequently these theories lead to general conclusions which apply to all physical
systems, and hence are of enormous power, as well as of fundamental significance. The role of
relativity appears to be that of specifying the properties of space and time, the arena in which all
physical processes take place.

It is perhaps a little unfortunate that the word ‘relativity’ immediately conjures up thoughts about
the work of Einstein. The idea that a principle of relativity applies to the properties of the physical
world is very old: it certainly predates Newton and seems to have been first stated concisely by
Galileo, though some of the ideas were already around at the time of Aristotle (who apparently
did not believe in the principle). What the principle of relativity essentially states is the following:

The laws of physics take the same mathematical form in all frames of reference moving
with constant velocity with respect to one another.

Explicitly recognized in this statement is the empirical fact that the laws of nature, almost without
exception, can be expressed in the form of mathematical equations. Why this should be so is a
profound issue that is not fully understood, but it is nevertheless the case that doing so offers the
most succinct way of summarizing the observed behaviour of a physical system under reproducible
experimental conditions. What the above statement is then saying can be ascertained as follows.
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Consider a collection of experimenters, (or, as they are often referred to, observers) each based
in laboratories moving at constant velocities with respect to one another, and each undertaking a
series of experiments designed to lead to a mathematical statement of a particular physical law,
such as the response of a body to the application of a force. According to the principle of relativity,
the final form of the equations derived (in this case, Newton’s laws) will be found to have exactly
the same form for all experimenters.

It should be understood that whilst the mathematical form of the laws will be the same, the actually
data obtained by each experimenter – even if they are monitoring the same physical event – will
not necessarily be numerically the same. For instance, the point in space where two bodies collide,
and the time at which this collision occurs, will not necessarily be assigned the same coordinates
by all experimenters. However, there is invariably a mathematical relationship between such data
obtained by the different observers. In the case of Newtonian relativity these transformation equa-
tions constitute the so-called Galilean transformation. Using these transformation equations, the
mathematical statement of any physical law according to one observer can be translated into the
law as written down by another observer. The principle of relativity then requires that the trans-
formed equations have exactly the same form in all frames of reference moving with constant
velocity with respect to one another, in other words that the physical laws are the same in all such
frames of reference.

This statement contains concepts such as ‘mathematical form’ and ‘frame of reference’ and ‘Galilean
transformation’ which we have not developed, so perhaps it is best at this stage to illustrate its con-
tent by a couple of examples. In doing so it is best to make use of an equivalent statement of the
principle, that is:

Given two observers A and B moving at a constant velocity with respect to one an-
other, it is not possible by any experiment whatsoever to determine which of the ob-
servers is ‘at rest’ or which is ‘in motion’.

First consider an example from ‘everyday experience’ – a train carriage moving smoothly at a
constant speed on a straight and level track – this is a ‘frame of reference’, an idea that will be
better defined later. Suppose that in a carriage of this train there is a pool table and suppose you
were a passenger on this carriage, and you decided to play a game of pool. One of the first things
that you would notice is that in playing any shot, you would have to make no allowance whatsoever
for the motion of the train. Any judgement of how to play a shot as learned by playing the game
at home, or in the local pool hall, would apply equally well on the train, irrespective of how fast
the train was moving. If we consider that what is taking place here is the innate application of
Newton’s Laws to describe the motion and collision of the pool balls, we see that no adjustment
has to be made to these laws when playing the game on the moving train.

This argument can be turned around. Suppose the train windows are covered, and the carriage
is well insulated so that there is no vibration or noise – i.e. there is no immediate evidence to
the senses as to whether or not the train is in motion. It might nevertheless still be possible to
determine if the train is in motion by carrying out an experiment, such as playing a game of pool.
But, as described above, a game of pool proceeds in exactly the same way as if it were being played
back home – no change in shot-making is required. There is no indication from this experiment as
to whether or not the train is in motion. There is no way of knowing whether, on pulling back the
curtains, you are likely to see the countryside hurtling by, or to find the train sitting at a station. In
other words, by means of this experiment which, in this case, involves Newton’s Laws of motion,
it is not possible to determine whether or not the train carriage is moving, an outcome entirely
consistent with the principle of relativity.

This idea can be extended to encompass other laws of physics. To this end, imagine a collection
of spaceships with engines shut off, all drifting through space. Each space ship constitutes a
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‘frame of reference’. On each of these ships a series of experiments is performed: a measurement
of the half life of uranium 235, a measurement of the outcome of the collision of two billiard
balls, an experiment in thermodynamics, e.g. a measurement of the boiling point of water under
normal atmospheric pressure, a measurement of the speed of light radiating from a nearby star:
any conceivable experiment. If the results of these experiments are later compared, what is found
is that in all cases (within experimental error) the results are identical. For instance, we do not find
that on one space ship water boils at 100◦C, on another hurtling towards the first it boils at 150◦C
and on another hurtling away from the first, it boils at 70◦C. In other words, the various laws of
physics being tested here yield exactly the same results for all the spaceships, in accordance with
the principle of relativity.

Thus, quite generally, the principle of relativity means that it is not possible, by considering any
physical process whatsoever, to determine whether or not one or the other of the spaceships is ‘in
motion’. The results of all the experiments are the same on all the space ships, so there is nothing
that definitely singles out one space ship over any other as being the one that is stationary. It is
true that from the point of view of an observer on any one of the space ships that it is the others
that are in motion. But the same statement can be made by an observer inanyspace ship. All that
we can say for certain is that the space ships are in relative motion, and not claim that one of them
is ‘truly’ stationary, while the others are all ‘truly’ moving.

This principle of relativity was accepted (in somewhat simpler form i.e. with respect to the me-
chanical behaviour of bodies) by Newton and his successors, even though Newton postulated that
underlying it all was ‘absolute space’ which defined the state of absolute rest. He introduced the
notion in order to cope with the difficulty of specifying with respect to what an accelerated object
is being accelerated. To see what is being implied here, imagine space completely empty of all
matter except for two masses joined by a spring. Now suppose that the arrangement is rotated
around an axis through the centre of the spring, and perpendicular to the spring. As a conse-
quence, the masses will undergo acceleration. Naively, in accordance with our experience, we
would expect that the masses would pull apart. But why should they? How do the masses ‘know’
that they are being rotated? There are no ‘signposts’ in an otherwise empty universe that would
indicate that rotation is taking place. By proposing that there existed an absolute space, Newton
was able to claim that the masses are being accelerated with respect to this absolute space, and
hence that they would separate in the way expected for masses in circular motion. But this was a
supposition made more for the convenience it offered in putting together his Laws of motion, than
anything else. It was an assumption that could not be substantiated, as Newton was well aware –
he certainly felt misgivings about the concept! Other scientists were more accepting of the idea,
however, with Maxwell’s theory of electromagnetism for a time seeming to provide some sort of
confirmation of the concept.

One of the predictions of Maxwell’s theory was that light was an electromagnetic wave that trav-
elled with a speedc ≈ 3 × 108 ms−1. But relative to what? Maxwell’s theory did not specify
any particular frame of reference for which light would have this speed. A convenient resolu-
tion to this problem was provided by an already existing assumption concerning the way light
propagated through space. That light was a form of wave motion was well known – Young’s in-
terference experiments had shown this – but the Newtonian world view required that a wave could
not propagate through empty space: there must be present a medium of some sort that vibrated as
the waves passed, much as a tub of jelly vibrates as a wave travels through it. The proposal was
therefore made that space was filled with a substance known as the ether whose purpose was to be
the medium that vibrated as the light waves propagated through it. It was but a small step to then
propose that this ether was stationary with respect to Newton’s absolute space, thereby solving
the problem of what the frame of reference was in which light had the speedc. Furthermore, in
keeping with the usual ideas of relative motion, the thinking was then that if you were to travel
relative to the ether towards a beam of light, you would measure its speed to be greater thanc, and
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less thanc if you travelled away from the beam. It then came as an enormous surprise when it was
found experimentally that this was not, in fact, the case.

This discovery was made by Michelson and Morley, who fully accepted the ether theory, and who,
quite reasonably, thought it would be a nice idea to try to measure how fast the earth was moving
through the ether. But the result they found was quite unexpected. Irrespective of the position of
the earth in its orbit around the sun, the result was always zero, which made no sense at all: surely
somewhere in the orbit the Earth would have to be moving relative to the ether. To put it another
way, they measured the speed of light always to be the same valuec no matter what the relative
motion might be of the Earth with respect to the ether. In our spaceship picture, this is equivalent
to all the spaceships obtaining the same value for the speed of light radiated by the nearby star
irrespective of their motion relative to the star. This result is completely in conflict with the rule
for relative velocities, which in turn is based on the principle of relativity as enunciated by Galileo.
Thus the independence of the speed of light on the motion of the observer seems to take on the
form of an immutable law of nature, and yet it is apparently inconsistent with the principle of
relativity. Something was seriously amiss, and it was Einstein who showed how to get around the
problem, and in doing so he was forced to conclude that space and time had properties undreamt
of in the Newtonian world picture.

The first contribution made by Einstein was to raise to the level of a postulate the observation that
the speed of light was apparently independent of the state of motion of its source, and this, along
with the principle of relativity presented above leads to the Special Theory of Relativity. This
theory is concerned almost entirely with physical processes as observed from reference frames
moving at constant velocities with respect to each other, so-called inertial frames of reference,
and incorporates the fact that the results of the hypothetical experiments described above will all
be independent of the state of motion of the experimenters. This is an outcome which it is best
to understand at a fundamental level in terms of the mathematical forms taken by the laws of
nature. All laws of nature appear to have expression in mathematical form, and, as mentioned
earlier, the principle of relativity can be understood as saying that the equations describing a law
of nature take the same mathematical form in all frames of reference moving at a constant velocity
with respect to each other, and moreover, the velocity of the reference frame does not appear
anywhere in these equations. But in order to guarantee that the principle of relativity holds true
for all physical processes, including the postulate concerning the constancy of the speed of light,
Einstein was forced to propose, along with a new perspective on the properties of space and time,
modified versions of the familiar Newtonian concepts of force, momentum and energy, leading,
amongst other things, to the famous equationE = mc2.

Much later (1915), after a long struggle, Einstein produced a generalization of this theory in which
it was required that the laws of physics should be the same inall frames of reference whether in
constant relative motion, or undergoing acceleration, or even accelerating different amounts in
different places. This amounts to saying that any physical process taking place in space and time
should proceed in a fashion that takes no account of the reference frame used to describe it. In other
words, it ought to be possible to write down the laws of physics in terms of quantities that make
no mention whatsoever of any particular reference frame. In accomplishing this task, Einstein was
able to show that the force of gravity could be understood as a reflection of underlying geometrical
properties of space and time – that space and time can be considered as a single geometric entity
that can exhibit curvature.

All these ideas, and a lot more besides, have to be presented in a much more rigorous form. It is
this perspective on relativity in terms of the mathematical statements of the laws of physics that is
developed here, and an important starting point is pinning down the notion of a frame of reference.



Chapter 2

Frames of Reference

P processes either directly or indirectly involve the dynamics of particles and/or fields
moving or propagating through space and time. As a consequence, almost all of the funda-

mental laws of physics involve position and time in some way or other e.g. Newton’s second law
of motion

F = ma (2.1)

when applied to a particle responding to the action of a force will yield the position of the particle
as a function of time. Likewise, Maxwell’s equations will yield the wave equation

∇2E −
1
c2

∂2E
∂t2
= 0 (2.2)

for the propagation of a light wave through space and time. Implicit in these statements of these
fundamental physical laws is the notion that we have at hand some way of measuring or specifying
or labelling each point in space and and different instants in time. So, in order to describe in a
quantitative fashion the multitude of physical processes that occur in the natural world, one of the
important requirements is that we be able to specify where and when events take place in space
and time. By ‘event’ we could be referring to something that occurs at an instant in time at a point
in space, or, more colloquially, over a localized interval in time, and in a localized region in space.
An evening of opera under the stars with a glass or two of fine wine shared with good company is
one example of an event. Such things as a star exploding as a supernova, or a match being struck
and flaring up briefly, or two billiard balls colliding with each other, or a space probe passing
through one of the rings of Saturn, or a radiactive nucleus emitting a beta particle – all could be
understand as being ‘events’, and in each case we could specify where the event occurred and at
what time it took place, provided, of course, we had some means of measuring these quantities:
the opera took place at a vineyard 200km to the north from home and just inland from the coast,
beginning last Saturday at 8:00pm, or the radioactive decay was of an atom at a certain position
in a metallic crystal, with the time of the emission registered by a Geiger counter. Whatever the
circumstance, we specify the where and when of an event by measuring its position relative to
some conveniently chosen origin, and using a clock synchronized in some agreed fashion with all
other clocks, to specify the time. This combination of a means of measuring the position of events,
and the time at which they occur, constitutes what is referred to as a frame of reference.

Of course, for the purposes of formulating a mathematical statement of a physical law describing,
say, the motion of a particle through space, or the properties of an electromagnetic or some other
field propagating through space, a precise way of specifying the where and when of events is
required, that is, the notion of a frame of reference, or reference frame, must be more carefully
defined.
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2.1 Constructing an Arbitrary Reference Frame

A frame of reference can be constructed in essentially any way, provided it meets the requirements
that it labels in a unique fashion the position and the time of the occurrence of any event that might
occur. A convenient way of imagining how this might be done is to suppose that all of space is
filled with a three dimensional lattice or scaffolding – something like a fishing net, perhaps. The
idea is illustrated in Fig. 2.1, though in two dimensions only. The net need not be rigid, and the
spacing between adjacent points where the coordinate lines cross need not be the same everywhere.

4

3
2

1

0

−1

−2

−3

−4

7

654
3

210−1
−2

P

O

Figure 2.1:A possible network of coordinate lines to specify position in two dimensional space, with clocks attached

to each intersection point. Using the labelling attached to this reference system, the originO is at (0,0) and the point

P will have the spatial coordinates (4,−2). The time of an event occurring atP will then be registered by the clock

attached toP. Points in space not at the intersection points will be (approximately) labelled by the coordinates of

the nearest intersection point, and the time of an event occurring at such a point would be as recorded by the nearest

clock. The accuracy with which these positions and times are recorded would be increased by using a finer network of

coordinate lines and clocks with better time resolution.

We now give labels to each intersection point on this three dimensional net. We could label
each such point in any way we like but it is convenient to do this in some systematic fashion,
as illustrated in Fig. 2.1. In the end, of course, we end up labelling each intersection point by
a triplet of three real numbers, the usual coordinates of a point in three dimensional space, with
one arbitrary point on the net chosen as the origin, and the coordinates of any other crossing point
counted off along the netting in some predetermined way.

To complete the picture, we also imagine that attached to the net at each intersection point is a
clock. In the same way that we do not necessarily require the net to be rigid, or uniform, we do
not necessarily require these clocks to run at the same rate (which is the temporal equivalent of
the intersection points on the net not being equally spaced). We do not even require the clocks to
be synchronized in any way. At this stage, the role of these clocks is simply to provide us with
a specification of the time at which an event occurs in the neighbourhood of the site to which the
clock is attached. Thus, if an event occur in space, such as a small supernova flaring up, burn
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marks will be left on the netting, and the clock closest to the supernova will grind to a halt, so that
it reads the time at which the event occurred, while the coordinates of the crossing point closest to
where the burn marks appear will give the position of the event.

It does not seem to be a particularly useful state of affairs to have completely arbitrary netting, i.e.
it would be far more useful to design the net so that the crossing points are evenly spaced along
the threads. This could be done, for instance, by laying out rods of some predetermined length and
marking off some convenient separation between the crossing points – and the finer the scale the
better. Like wise, it is not particularly useful to have a whole host of clocks ticking away indepen-
dently of one another1, particularly if we want to compare whether one event occurring at some
point in space occurs earlier or later than some other event occurring elsewhere, and if we want to
specify how far apart in time they occur. In other words, it would be preferable to arrange for these
clocks to be synchronized in some way. This, however, is not at all a straightforward procedure
and in some cases not even possible! It is easy enough to synchronize clocks at the same point in
space – the problem is coming up with a way of doing so for clocks at different points in space to
be synchronized. In some circumstances it is possible to carry out this synchronization, thereby
assigning a global time throughout the reference frame. In such cases, one possible procedure is
to suppose that a whole collection of identical clocks are gathered at one point, say the origin of
coordinates, and there they are all synchronized to some ‘master clock’. These clocks are then
carried at an exceedingly slow rate (since, as we will see later, moving clocks ‘run slow’, and this
can affect the synchronization) and distributed around the reference frame – a process known as
adiabatic synchronization. Some adjustment may be necessary to the rates of each of these clocks,
depending on any gravitational field present, and then we are done2.

Gravity-free space (i.e. the situation described by special relativity) is one important situation
where this synchronization procedure is possible. An expanding isotropic universe is another.
There are, however, circumstances in which this cannot be done, such as in space-time around a
rotating black hole, or more exotic still, in G̈odel’s model of a rotating universe.

This combination of clocks and netting thus gives us one possible frame of reference with which
to specify the positions and times at which events occur in space and time. With this frame
of reference, we could, for instance, plot the position of a particle moving through space as a
function of time: just imagine that the particle is highly radioactive so it leaves burn marks on the
netting, and stops any closely nearby clock it passes. After the particle has passed by, someone
(the observer) clambers along the netting and notes down the coordinates of all the burn marks,
and the times registered on the clocks closest to each such mark, takes all this data back to his
laboratory, and plots position as a function of time. The result is a depiction of the path of the
particle according to this frame of reference.

By using a discrete net and clocks that have a finite time interval between ticks we can only
represent the positions and times of occurrence of events to the accuracy determined by how fine
the netting is and how long this interval is between clock ticks. But as we believe that space
and time are both continuous quantities (though quantum mechanics may have something to say
about this), we can suppose that we can get a better approximation to the position and time of

1Two chronometers the captain had,
One by Arnold that ran like mad,
One by Kendal in a walnut case,
Poor devoted creature with a hangdog face.

Arnold always hurried with a crazed click-click
Dancing over Greenwich like a lunatic,
Kendal panted faithfully his watch-dog beat,
Climbing out of Yesterday with sticky little feet.

2Carrying out the procedure of setting length scales and synchronizing clocks is actually trickier than it seems. For
instance, the rods have to be at rest with respect to the net at the location where the the distance is to be marked off,
and the rods cannot be too long. In fact, in curved space time, they need to be infinitesimal in length, or at least very
short compared to the length scale of the curvature of spacetime in its vicinity. Both the setting of length scales and
synchronizing of clocks can be achieved by the use of light signals, but we will not be concerning ourselves with these
issues.
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occurrence of an event by imagining a finer netting and clocks with shorter intervals ‘between
ticks’. Ultimately we would end up with an infinitesimally fine net, and clocks whose ticks occur
an infinitesimally short interval apart. But in the end we usually do away with this operationally
based picture of nets and clocks and rely on the abstract mathematical notion of a reference frame.
But the physical meaning of these mathematically idealized reference frames is nevertheless to be
found in the approximate pictures conjured up by using these ideas of a network of clocks attached
to a three-dimensional scaffolding filling all of space. When the going gets tough it is often useful
to return to the notion of a reference frame defined in this way.

We can set up any number of such reference frames, each with its own coordinate network and
set of coordinate clocks. We have (almost) total freedom to set up a reference frame any way we
like, including different reference frames being in motion, or even accelerating, with respect to
one another, and not necessarily in the same way everywhere. But whichever reference frame we
use, we can then conduct experiments whose outcomes are expressed in terms of the associated set
of coordinates, and express the various laws of physics in terms of the coordinate systems used.
So where does the principle of relativity come into the picture here? What this principle is saying,
in its most general form, is that since any physical process taking place in space and time ought to
proceed in a fashion that takes no account of the reference frame that we use to describe it. In other
words. it ought to be possible to write down the laws of physics in terms of quantites that make
no mention whatsoever of any particular reference frame. We can already do this for Newtonian
mechanics: Newton’s second law can be written as

F = m
d2r
dt2

i.e. expressed in a way that makes no mention of a reference frame (though note the appearance
of a singled out time variablet – the absolute time of Newton). If we had chosen a particular set
of axes, we would have

Fx = m
d2x

dt2

and so on where the values of the components ofF depend on the set of axes chosen. Later we
will see how physical laws can be expressed in a ‘frame invariant way’ in the context of special
relativity, rather than Newtonian physics. Requiring the relativity principle to be true for arbitrary
reference frames, along with a further postulate, the principle of equivalence, which essentially
states that an object undergoing free fall in a gravitational field is equivalent to the particle being
acted on by no forces at all, then leads to general relativity.

2.1.1 Events

Colloquially, an event is something that occurs at a localized region in space over a localized
interval in time, or, in an idealized limit, at a point in space at an instant in time. Thus, the motion
of a particle through space could be thought of as a continous series of events, while the collision
of two particles would be an isolated event, and so on. However, it is useful to release this term
‘event’ from being associated with something happening. After all, the the coordinate network
spread throughout space, and the clocks ticking away the hours will still be labelling points in
space, along with ‘the time’ at each point in space, irrespective of whether or not anything actually
takes place at a particular locality and at a particular time. The idea then is to use the term ‘event’
simply as another name for a point in space and time, this point specified by the spatial coordinates
of the point in space, and the reading of a clock at that point.

An event will have different coordinates in different reference frames. It is then important and
useful to be able to relate the coordinates of events in one reference frame to the coordinates of the
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same event in some other reference frame. In Newtonian physics, this relation is provided by the
Galilean transformation equations, and in special relativity by the Lorentz transformation. It is the
latter transformation law, and special relativity in particular that we will be concerning ourselves
with from now on.

2.2 Inertial Frames of Reference

O

X

Y

Figure 2.2: Cartesian coor-
dinate system (in two dimen-
sions).

As we have just seen, a reference frame can be defined in a mul-
titude of ways, but quite obviously it would be preferable to use
the simplest possible, which brings to mind the familiar Cartesian
set of coordinate axes. Thus, suppose we set up a lattice work of
rods as illustrated in Fig. 2.2 in which the rods extend indefinitely
in all directions. Of dourse, there will be a third array of rods
perpendicular to those in the figure in theZ direction.

The question then arises: can we in fact do this forall of space?
From the time of Euclid, and perhaps even earlier, until the 19th
century, it was taken for granted that this would be possible, with
the rods remaining parallel in each direction out to infinity, even
though attempts to prove this from the basic axioms of Euclidean
geometry never succeeded. Eventually it was realized by the
mathematicians Gauss, Riemann and Lobachevsky that this idea about parallel lines never meet-
ing, while intuitively plausible, was not in fact necesssarily true. It was perfectly possible to
construct geometries wherein ‘parallel’ lines could either meet, or diverge, when sufficiently far
extended without resulting in any mathematical inconsistencies. Practically, what this means is
that by taking short lengths∆l of rod and joining them together in such a way that each length is
parallel to the one before, by a process known as parallel transport, then the extended rods could
in fact come closer together or become increasingly separated, see Fig. 2.3.

Figure 2.3:Coordinate array constructed by laying down in-

finitesimal segments of length∆l. Each segment is laid down

parallel to its neighbour by a process known as parallel trans-

port. The intrinsic curvature of the underlying space is revealed

by the array of rods diverging (as here) or possibly coming

closer together.

Such behaviour is indicative of space
being intrinsically curved, and there is
no apriori reason why space ought to be
flat as Euclid assumed, i.e. space could
possess some kind of curvature. In fact,
Gauss attempted to measure the curva-
ture of space by measuring the area of a
very large triangle whose vertices were
taken to be the peaks of three widely
separated mountain peaks in the Alps.
The intention was to see if the area of
the triangle came out to be either big-

ger or smaller than that which would be expected on the basis of Euclidean geometry – either
result would have been an indicator of curvature of space. To within the probably very large ex-
perimental error of the experiment, no evidence of curvature was found. Riemann, a student of
Gauss, surmised that the curvature of space was somehow related to the force of gravity, but he
was missing one important ingredient – it is the curvature of space and time together that gives
rise to gravity, as Einstein was able to show. Gravitational forces are thus rather peculiar forces
in comparison to the other forces of nature such as electromagnetic forces or the nuclear forces in
that they are not due to the action of some external influence exerting its effect within pre-existing
space and time, but rather is associated with the intrinsic properties of spacetime itself. Thus, we
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cannot presume that the arrangement of rods as indicated in Fig. 2.2 can be extended indefinitely
throughout all of space. However, over a sufficiently localized region of space it can be shown to
be the case that such an arrangement is possible, i.e. it is possible to construct frames of reference
of a particularly simple form: a lattice of mutually perpendicular rigid rods. In the presence of
gravity, it is not possible to extend such a lattice throughout all space, essentially because space
is curved. But that is a topic for consideration in general relativity. For gravity free space, these
rods can be presumed to extend to infinity in all directions. In addition, it is possible to associate
with this lattice a collection of synchronized identical clocks positioned at the intersection of these
rods. We will take this simple lattice structure as our starting point for discussing special relativity.
That this can be done is a signature of what is known as flat space-time.

First of all we can specify the positions of the particle in space by determining its coordinates
relative to a set of mutually perpendicular axesX, Y, Z. In practice this could be done by choosing
our origin of coordinates to be some convenient point and imagining that rigid rulers – which
we can also imagine to be as long as necessary – are laid out from this origin along these three
mutually perpendicular directions. The position of the particle can then be read off from these
rulers, thereby giving the three position coordinates (x, y, z) of the particle.

By this means we can specifywherethe particle is. As discussed in Section 2, in order to specify
when it is at a particular point in space we stretch our imagination further and imagine that in
addition to having rulers to measure position, we also have at each point in space a clock, and that
these clocks have all beensynchronizedin some way. The idea is that with these clocks we can
tell when a particle is at a particular position in space simply by reading off the time indicated by
the clock at that position.

According to our ‘common sense’ notion of time, it would appear sufficient to have only one set of
clocks filling all of space. Thus, no matter which set of moving rulers we use to specify the position
of a particle, we always use the clocks belonging to this single vast set to tell us when a particle is
at a particular position. In other words, there is only one ‘time’ for all the position measuring set
of rulers. This time is the same time independent of how the rulers are moving through space. This
is the idea of universal or absolute time due to Newton. However, as Einstein was first to point out,
this idea of absolute time is untenable, and that the measurement of time intervals (e.g. the time
interval between two events such as two supernovae occurring at different positions in space) will
in fact differ for observers in motion relative to each other. In order to prepare ourselves for this
possibility, we shall suppose thatfor each possible set of rulers– including those fixed relative to
the ground, or those moving with a subatomic particle and so on, there are adifferentset of clocks.
Thus the position measuring rulers carry their own set of clocks around with them. The clocks
belonging to each set of rulers are of course synchronized with respect to each other. Later on we
shall see how this synchronization can be achieved. The idea now is that relative to a particular
set of rulers we are able to specify where a particle is, and by looking at the clock (belonging to
that set of rulers) at the position of the particle, we can specify when the particle is at that position.
Each possible collection of rulers and associated clocks constitutes what is known as a frame of
reference or a reference frame.

In many texts reference is often made to an observer in a frame of reference whose job apparently
is to make various time and space measurements within this frame of reference. Unfortunately,
this conjures up images of a person armed with a stopwatch and a pair of binoculars sitting at
the origin of coordinates and peering out into space watching particles (or planets) collide, stars
explode and so on. This is not the sense in which the term observer is to be interpreted. It is
important to realise that measurements of time are made using clocks which are positioned at
the spatial point at which an event occurs. Any centrally positioned observer would have to take
account of the time of flight of a signal to his or her observation point in order to calculate the
actual time of occurrence of the event. One of the reasons for introducing this imaginary ocean of
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clocks is to avoid such a complication. Whenever the term observer arises it should be interpreted
as meaning the reference frame itself, except in instances in which it is explicitly the case that the
observations of an isolated individual are under consideration.

If, as measured by one particular set of rulers and clocks (i.e. frame of reference) a particle is
observed to be at a position at a timet (as indicated by the clock at (x, y, z)), we can summarize
this information by saying that the particle was observed to be at the point (x, y, z, t) in space-time.
The motion of the particle relative to this frame of reference would be reflected in the particle
being at different positions (x, y, z) at different timest, see Fig. 2.4.

X

Y

Z

Figure 2.4:Path of a particle as measured in a frame of reference. The clocks indicate the times at which
the particle passed the various points along the way.

For instance in the simplest non-trivial case we may find that the particle is moving at constant
speedv in the direction of the positiveX axis, i.e.x = vt. Finally, we could consider the frame of
reference whose spatial origin coincides with the particle itself. In this last case, the position of the
particledoes not changesince it remains at the spatial origin of its frame of reference. However,
the clock associated with this origin keeps on ticking so that the particle’s coordinates in space-
time are (0,0,0, t) with t the time indicated on the clock at the origin, being the only quantity that
changes. If a particle remains stationary relative to a particular frame of reference, then that frame
of reference is known as therest framefor the particle.

Of course we can use frames of reference to specify the where and when of things other than the
position of a particle at a certain time. For instance, the point in space-time at which an explosion
occurs, or where and when two particles collide etc., can also be specified by the four numbers
(x, y, z, t) relative to a particular frame of reference. In fact any event occurring in space and time
can be specified by four such numbers whether it is an explosion, a collision or the passage of
a particle through the position (x, y, z) at the timet. For this reason, the four numbers (x, y, z, t)
together are often referred to as anevent.

2.2.1 Newton’s First Law of Motion

Having established how we are going to measure the coordinates of a particle in space and time,
we can now turn to considering how we can use these ideas to make a statement about the physical
properties of space and time. To this end let us suppose that we have somehow placed a particle in
the depths of space far removed from all other matter. It is reasonable to suppose that a particle so
placed isacted on by no forces whatsoever3. The question then arises: ‘What kind of motion is this

3It is not necessary to define what we mean by force at this point. It is sufficient to presume that if the particle is far
removed from all other matter, then its behaviour will in no way be influenced by other matter, and will instead be in
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particle undergoing?’ In order to determine this we have to measure its position as a function of
time, and to do this we have to provide a reference frame. We could imagine all sorts of reference
frames, for instance one attached to a rocket travelling in some complicated path. Under such
circumstances, the path of the particle as measured relative to such a reference frame would be
very complex. However, it is at this point that an assertion can be made, namely that for certain
frames of reference, the particle will be travelling in a particularly simple fashion – a straight line at
constant speed. This is something that has not and possibly could not be confirmed experimentally,
but it is nevertheless accepted as a true statement about the properties of the motion of particles in
the absences of forces. In other words we can adopt as a law of nature, the following statement:

There exist frames of reference relative to which a particle acted on by no forces
moves in a straight line at constant speed.

This essentially a claim that we are making about the properties of spacetime. It is also simply a
statement of Newton’s First Law of Motion. A frame of reference which has this property is called
an inertial frame of reference, or just an inertial frame.

Gravity is a peculiar force in that if a reference frame is freely falling under the effects of gravity,
then any particle also freely falling will be observed to be moving in a straight line at constant
speed relative to this freely falling frame. Thus freely falling frames constitute inertial frames of
reference, at least locally.

response to any inherent properties of space (and time) in its vicinity.



Chapter 3

Newtonian Relativity

Te arguments in the previous Chapter do not tell us whether there is one or many inertial frames
of reference, nor, if there is more than one, does it tell us how we are to relate the coordinates

of an event as observed from the point-of-view of one inertial reference frame to the coordinates
of the same event as observed in some other. These transformation laws are essential if we are to
compare the mathematical statements of the laws of physics in different inertial reference frames.
The transformation equations that are derived below are the mathematical basis on which it can be
shown that Newton’s Laws are consistent with the principle of relativity. In establishing the latter,
we can show that there is in fact an infinite number of inertial reference frames.

3.1 The Galilean Transformation

To derive these transformation equations, consider an inertial frame of referenceS and a second
reference frameS′ moving with a velocityvx relative toS.

 4'-5"  1'-5" 
X

Y

Z

vxt′ x′ X′

Y′

Z′

‘event’

vx

S′S

Figure 3.1:A frame of referenceS′ is moving with a velocityvx relative to the inertial frameS. An event
occurs with spatial coordinates (x, y, z) at timet in S and at (x′, y′, z′) at timet′ in S′.

Let us suppose that the clocks inS andS′ are set such that when the origins of the two reference
framesO andO′ coincide, all the clocks in both frames of reference read zero i.e.t = t′ = 0.
According to ‘common sense’, if the clocks inS andS′ are synchronized att = t′ = 0, then
they will always read the same, i.e.t = t′ always. This, once again, is the absolute time concept
introduced in Section 2.2. Suppose now that an event of some kind, e.g. an explosion, occurs at a
point (x′, y′, z′, t′) according toS′. Then, by examining Fig. 3.1, according toS, it occurs at the
point

x = x′ + vxt
′, y = y′, z= z′

and at the time t = t′
(3.1)
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These equations together are known as the Galilean Transformation, and they tell us how the
coordinates of an event in one inertial frameS are related to the coordinates of the same event as
measured in another frameS′ moving with a constant velocity relative toS.

Now suppose that in inertial frameS, a particle is acted on by no forces and hence is moving along
the straight line path given by:

r = r0 + ut (3.2)

whereu is the velocity of the particle as measured inS. Then inS′, a frame of reference moving
with a velocityv = vxi relative toS, the particle will be following a path

r ′ = r0 + (u − v)t′ (3.3)

where we have simply substituted for the components ofr using Eq. (3.1) above. This last result
also obviously represents the particle moving in a straight line path at constant speed. And since
the particle is being acted on by no forces,S′ is also an inertial frame, and sincev is arbitrary,
there is in general an infinite number of such frames.

Incidentally, if we take the derivative of Eq. (3.3) with respect tot, and use the fact thatt = t′, we
obtain

u′ = u − v (3.4)

which is the familiar addition law for relative velocities.

It is a good exercise to see how the inverse transformation can be obtained from the above equa-
tions. We can do this in two ways. One way is simply to solve these equations so as to express
the primed variables in terms of the unprimed variables. An alternate method, one that is mpre
revealing of the underlying symmetry of space, is to note that ifS′ is moving with a velocityvx

with respect toS, thenS will be moving with a velocity−vx with respect toS′ so the inverse
transformation should be obtainable by simply exchanging the primed and unprimed variables,
and replacingvx by −vx. Either way, the result obtained is

x′ = x− vxt

y′ = y

z′ = z

t′ = t.


(3.5)

3.2 Newtonian Force and Momentum

Having proposed the existence of a special class of reference frames, the inertial frames of ref-
erence, and the Galilean transformation that relates the coordinates of events in such frames, we
can now proceed further and study whether or not Newton’s remaining laws of motion are indeed
consistent with the principle of relativity. First we need a statement of these two further laws of
motion.

3.2.1 Newton’s Second Law of Motion

It is clearly the case that particles do not always move in straight lines at constant speeds relative to
an inertial frame. In other words, a particle can undergo acceleration. This deviation from uniform
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motion by the particle is attributed to the action of a force. If the particle is measured in the inertial
frame to undergo an accelerationa, then this acceleration is a consequence of the action of a force
F where

F = ma (3.6)

and where the massm is a constant characteristic of the particle and is assumed, in Newtonian
dynamics, to be the same in all inertial frames of reference. This is, of course, a statement of New-
ton’s Second Law. This equation relates the force, mass and acceleration of a body as measured
relative to a particular inertial frame of reference.

As we indicated in the previous section, there are in fact an infinite number of inertial frames of
reference and it is of considerable importance to understand what happens to Newton’s Second
Law if we measure the force, mass and acceleration of a particle from different inertial frames
of reference. In order to do this, we must make use of the Galilean transformation to relate the
coordinates (x, y, z, t) of a particle in one inertial frameS say to its coordinates (x′, y′, z′, t′) in
some other inertial frameS′. But before we do this, we also need to look at Newton’s Third Law
of Motion.

3.2.2 Newton’s Third Law of Motion

Newton’s Third Law, namely that to every action there is an equal and opposite reaction, can also
be shown to take the same form in all inertial reference frames. This is not done directly as the
statement of the Law just given is not the most useful way that it can be presented. A more useful
(and in fact far deeper result) follows if we combine the Second and Third Laws, leading to the
law of conservation of momentum which is

In the absence of any external forces, the total momentum of a system is constant.

It is then a simple task to show that if the momentum is conserved in one inertial frame of refer-
ence, then via the Galilean transformation, it is conserved in all inertial frames of reference.

3.3 Newtonian Relativity

By means of the Galilean Transformation, we can obtain an important result of Newtonian me-
chanics which carries over in a much more general form to special relativity. We shall illustrate the
idea by means of an example involving two particles connected by a spring. If theX coordinates
of the two particles arex1 andx2 relative to some reference frameS then from Newton’s Second
Law the equation of motion of the particle atx1 is

m1
d2x1

dt2
= −k(x1 − x2 − l) (3.7)

wherek is the spring constant,l the natural length of the spring, andm1 the mass of the particle.
If we now consider the same pair of masses from the point of view of another frame of reference
S′ moving with a velocityvx relative toS, then

x1 = x′1 + vxt
′ and x2 = x′2 + vxt

′ (3.8)

so that
d2x1

dt2
=

d2x′1
dt′2

(3.9)
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and
x2 − x1 = x′2 − x′1. (3.10)

Thus, substituting the last two results into Eq. (3.7) gives

m1
d2x′1
dt′2

= −k(x′1 − x′2 − l) (3.11)

Now according to Newtonian mechanics, the mass of the particle is the same in both frames i.e.

m1 = m′1 (3.12)

wherem′1 is the mass of the particle as measured inS′. Hence

m′1
d2x′1
dt′2

= −k(x′1 − x′2 − l) (3.13)

which is exactly the same equation as obtained inS, Eq. (3.7) except that the variablesx1 and
x2 are replaced byx′1 and x′2. In other words, theform of the equation of motion derived from
Newton’s Second Law is the same in both frames of reference. This result can be proved in a more
general way than for than just masses on springs, and we are lead to conclude that the mathematical
form of the equations of motion obtained from Newton’s Second Law are the same in all inertial
frames of reference.

Continuing with this example, we can also show that momentum is conserved in all inertial refer-
ence frames. Thus, in reference frameS, the total momentum is

m1ẋ1 +m2ẋ2 = P = constant. (3.14)

Using Eq. (3.8) above we then see that inS′ the total momentum is

P′ = m′1ẋ′1 +m′2ẋ′2 = m1ẋ1 +m2ẋ2 − (m1 +m2)vx = P− (m1 +m2)vx (3.15)

which is also a constant (but not the same constant as inS – it is not required to be the same
constant!!). The analogous result to this in special relativity plays a very central role in setting up
the description of the dynamics of a system.

The general conclusion we can draw from all this is that:

Newton’s Laws of motion are identical in all inertial frames of reference.

This is the Newtonian (or Galilean) principle of relativity, and was essentially accepted by all
physicists, at least until the time when Maxwell put together his famous set of equations. One
consequence of this conclusion is that it is not possible to determine whether or not a frame of
reference is in a state of motion by any experiment involving Newton’s Laws. At no stage do
the Laws depend on the velocity of a frame of reference relative to anything else, even though
Newton had postulated the existence of some kind of ”absolute space” i.e. a frame of reference
which defined the state of absolute rest, and with respect to which the motion of anything could
be measured. The existence of such a reference frame was taken for granted by most physicists,
and for a while it was thought to be have been uncovered following on from the appearance on the
scene of Maxwell’s theory of electromagnetism.
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3.4 Maxwell’s Equations and the Ether

The Newtonian principle of relativity had a successful career till the advent of Maxwell’s work
in which he formulated a mathematical theory of electromagnetism which, amongst other things,
provided a successful physical theory of light. Not unexpectedly, it was anticipated that the equa-
tions Maxwell derived should also obey the above Newtonian principle of relativity in the sense
that Maxwell’s equations should also be the same in all inertial frames of reference. Unfortunately,
it was found that this was not the case. Maxwell’s equations were found to assume completely
different forms in different inertial frames of reference. It was as ifF = ma worked in one frame of
reference, but in another, the law had to be replaced by some bizarre equation likeF′ = m(a′)2a′!
In other words it appeared as if Maxwell’s equations took a particularly simple form in one spe-
cial frame of reference, but a quite complicated form in another moving relative to this special
reference frame. For instance, the wave equation for light assumed the simple form

∂2E

∂x2
−

1
c2

∂2E

∂t2
= 0 (3.16)

in this ‘special frame’S, which is the equation for waves moving at the speedc. Under the Galilean
transformation, this equation becomes

∂2E′

∂x′2
−

1
c2

∂2E′

∂t′2
−

2vx

c2

∂2E′

∂x′∂t′
−

vx

c2

∂

∂x′

[
vx
∂E′

∂x′

]
= 0 (3.17)

for a frameS′ moving with velocityvx relative toS. This ‘special frame’S was assumed to
be the one that defined the state of absolute rest as postulated by Newton, and that stationary
relative to it was a most unusual entity, the ether. The ether was a substance that was supposedly
the medium in which light waves were transmitted in a way something like the way in which air
carries sound waves. Consequently it was believed that the behaviour of light, in particular its
velocity, as measured from a frame of reference moving relative to the ether would be different
from its behaviour as measured from a frame of reference stationary with respect to the ether.
Since the earth is following a roughly circular orbit around the sun, then it follows that a frame of
reference attached to the earth must at some stage in its orbit be moving relative to the ether, and
hence a change in the velocity of light should be observable at some time during the year. From
this, it should be possible to determine the velocity of the earth relative to the ether. An attempt
was made to measure this velocity. This was the famous experiment of Michelson and Morley.
Simply stated, they argued that if light is moving with a velocityc through the ether, and the Earth
was at some stage in its orbit moving with a velocityv relative to the ether, then light should be
observed to be travelling with a velocityc′ = c− v relative to the Earth. We can see this by simply
solving the wave equation inS:

E(x, t) = E(x− ct) (3.18)

where we are supposing that the wave is travelling in the positiveX direction. If we suppose the
Earth is also travelling in this direction with a speedvx relative to the ether, and we now apply the
Galilean Transformation to this expression, we get, for the fieldE′(x′, t′) as measured inS′, the
result

E′(x′, t′) = E(x, t) = E(x′ + vxt
′ − ct′) = E(x′ − (c− vx)t

′) (3.19)

i.e. the wave is moving with a speedc − vx which is just the Galilean Law for the addition of
velocities given in Eq. (3.4).

Needless to say, on performing their experiment – which was extremely accurate – they found that
the speed of light was always the same. Obviously something was seriously wrong. Their exper-
iments seemed to say that the earth was not moving relative to the ether, which was manifestly
wrong since the earth was moving in a circular path around the sun, so at some stage it had to
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be moving relative to the ether. Many attempts were made to patch things up while still retaining
the same Newtonian ideas of space and time. Amongst other things, it was suggested that the
earth dragged the ether in its immediate vicinity along with it. It was also proposed that objects
contracted in length along the direction parallel to the direction of motion of the object relative
to the ether. This suggestion, due to Fitzgerald and elaborated on by Lorentz and hence known
as the Lorentz-Fitzgerald contraction, ‘explained’ the negative results of the Michelson-Morley
experiment, but faltered in part because no physical mechanism could be discerned that would
be responsible for the contraction. The Lorentz-Fitzgerald contraction was to resurface with a
new interpretation following from the work of Einstein. Thus some momentary successes were
achieved, but eventually all these attempts were found to be unsatisfactory in various ways. It was
Einstein who pointed the way out of the impasse, a way out that required a massive revision of our
concepts of space, and more particularly, of time.



Chapter 4

Einsteinian Relativity

T difficulties with the Newtonian relativity was overcome by Einstein who made two pos-
tulates that lead to a complete restructuring of our ideas of space time, and the dyanamical

proerties of matter.

4.1 Einstein’s Postulates

The difficulty that had to be resolved amounted to choosing amongst three alternatives:

1. The Galilean transformation was correct and something was wrong with Maxwell’s equa-
tions.

2. The Galilean transformation applied to Newtonian mechanics only.

3. The Galilean transformation, and the Newtonian principle of relativity based on this trans-
formation were wrong and that there existed a new relativity principle valid for both me-
chanics and electromagnetism that was not based on the Galilean transformation.

The first possibility was thrown out as Maxwell’s equations proved to be totally successful in
application. The second was unacceptable as it seemed something as fundamental as the transfor-
mation between inertial frames could not be restricted to but one set of natural phenomena i.e. it
seemed preferable to believe that physics was a unified subject. The third was all that was left,
so Einstein set about trying to uncover a new principle of relativity. His investigations led him to
make two postulates:

1. All the laws of physics are the same in every inertial frame of reference. This postulate
implies that there is no experiment whether based on the laws of mechanics or the laws of
electromagnetism from which it is possible to determine whether or not a frame of reference
is in a state of uniform motion.

2. The speed of light is independent of the motion of its source.

Einstein was inspired to make these postulates through his study of the properties of Maxwell’s
equations and not by the negative results of the Michelson-Morley experiment, of which he was
apparently only vaguely aware. It is this postulate that forces us to reconsider what we understand
by space and time.
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One immediate consequence of these two postulates is that the speed of light is the same in all
inertial frames of reference. We can see this by considering a source of light and two frames of
reference, the first frame of referenceS′ stationary relative to the source of light and the other,S,
moving relative to the source of light.

S

S′

vx

Figure 4.1: A source of light observed from two inertial framesS and S′ whereS′ is moving with a
velocityvx with respect toS.

By postulate 2,S measures the speed of light to bec. However, from postulate 1, this situation is
indistinguishable from that depicted in Fig. 4.2

S

S′

−vx

−vx

Figure 4.2:The same situation as in Fig. (4.1) except from the point of view ofS′.

and by postulate 2,S′ must also measure the speed of light to bec. In other words, both reference
framesS and measure the speed of light to bec.

Before proceeding further with the consequences of these two rather innocent looking postulates,
we have to be more precise about how we go about measuring time in an inertial frame of refer-
ence.

4.2 Clock Synchronization in an Inertial Frame

Recall from Section 2.2 that in order to measure the time at which an event occurred at a point in
space, we assumed that all of space was filled with clocks, one for each point in space. Moreover,
there were a separate set of clocks for each set of rulers so that a frame of reference was defined
both by these rulers and by the set of clocks which were carried along by the rulers. It was also
stated that all the clocks in each frame of reference were synchronized in some way, left unspeci-
fied. At this juncture it is necessary to be somewhat more precise about how this synchronization
is to be achieved. The necessity for doing this lies in the fact that we have to be very clear about
what we are doing when we are comparing the times of occurrence of events, particularly when
the events occur at two spatially separate points.
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The procedure that can be followed to achieve the synchronization of the clocks in one frame of
reference is quite straightforward. We make use of the fact that the speed of light is precisely
known, and is assumed to be always a constant everywhere in free space no matter how it is
generated or in which direction it propagates through space. The synchronization is then achieved
in the following way. Imagine that at the spatial origin of the frame of reference we have a master
clock, and that at some instantt0 = 0 indicated by this clock a spherical flash of light is emitted
from the source.

 2'-4" 

X

Y

Z

Spherical flash of light

d

P(x, y, z)

Figure 4.3:A spherical flash of light emitted att = 0 propagates out from the origin, reaching the pointP
after a timed/c. The clock atP is then set to readt = d/c.

The flash of light will eventually reach the pointP(x, y, z) situated a distanced from the origin
O. When this flash reachesP, the clock at that position is adjusted to readt = d/c. And since
d2 = x2 + y2 + z2, this means that

x2 + y2 + z2 = c2t2 (4.1)

a result made use of later in the derivation of the Lorentz equations.

This procedure is followed for all the clocks throughout the frame of reference. By this means,
the clocks can be synchronized. A similar procedure applies for every frame of reference with its
associated clocks.

It should be pointed out that it is not necessary to use light to do this. We could have used any
collection of objects whose speed we know with great precision. However it is a reasonable choice
to use light since all evidence indicates that light always travels with the same speedc everywhere
in space. Moreover, when it comes to comparing observations made in different frames of ref-
erence, we can exploit the fact the speed of light always has the same value through postulate 2
above. We do not know as yet what happens for any other objects. In fact, as a consequence of
Einstein’s second postulate we find that whereas the clocks in one reference frame have all been
synchronized to everyone’s satisfaction in that frame of reference, it turns out that they are not
synchronized with respect to another frame of reference moving with respect to the first. The
meaning and significance of this lack of synchronization will be discussed later.

We are now in a position to begin to investigate how the coordinates of an event as measured in one
frame of reference are related to the coordinates of the event in another frame of reference. This
relationship between the two sets of coordinates constitutes the so-called Lorentz transformation.

4.3 Lorentz Transformation

In deriving this transformation, we will eventually make use of the constancy of the speed of
light, but first we will derive the general form that the transformation law must take purely from
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kinematic/symmetry considerations. Doing so is based on two further assumptions which seem to
be entirely reasonable:

Homogeneity: The intrinsic properties of empty space are the same everywhere and for all time.
In other words, the properties of the rulers and clocks do not depend on their positions in
(empty) space, nor do they vary over time.

Spatial Isotropy: The intrinsic properties of space is the same in all directions. In other words,
the properties of the rulers and clocks do not depend on their orientations in empty space.

There is a third, much more subtle condition:

No Memory: The extrinsic properties of the rulers and clocks may be functions of their current
states of motion, but not of their states of motion at any other time.

This is not referring to what might happen to a ruler or a clock as a consequence of what it might
have done in the past such as, for instance, having undergone such severe acceleration that its
inner workings were wrecked. To see what it refers to, we can imagine that we prepare two
identical clocks and send one off on an elaborate journey through space and time while the other
stays behind. When brought back together, the clocks might not read the same time, but what this
postulate is saying is that they will be ticking at the same rate. Similarly for a pair of rulers: they
will have the same length when brought back together. Thus we do not have to consider the past
history of any of our clocks and rulers when comparing lengths or intervals of time: space and
time does not leave a lingering imprint on the objects that live in space and time.

The starting point is to consider two inertial framesS andS′ whereS′ is moving with a velocity
vx relative toS.

Let us suppose that when the two origins coincide, the times on the clocks in each frame of
reference are set to read zero, that ist = t′ = 0. Now consider an event that occurs at the point
(x, y, z, t) as measured inS. The same event occurs at (x′, y′, z′, t′) in S′. What we are after is a set
of equations that relate these two sets of coordinates.

We are going to assume a number of things about the form of these equations, all of which can
be fully justified, but which we will introduce more or less on the basis that they seem intuitively
reasonable.

First, because the relative motion of the two reference frames is in theX direction, it is reasonable
to expect that all distances measured at right angles to theX direction will be the same in bothS
andS′, i.e.1

y = y′ andz= z′. (4.2)

We now assume that (x, t) and (x′, t′) are related by the linear transformations

x′ = Ax+ Bt (4.3)

t′ = Cx+ Dt. (4.4)

Why linear? Assuming that space and time is homogeneous tells us that a linear relation is the
only possibility2. What it amounts to saying is that it should not matter where in space we choose

1If we assumed, for instance, thatz= kz′, then it would also have to be true thatz′ = kz if we reverse the roles ofS
andS′, which tells us thatk2 = 1 and hence thatk = ±1. We cannot havez= −z′ as the coordinate axes are clearly not
‘inverted’, so we must havez= z′.

2In general,x′ will be a function ofx andt, i.e. x′ = f (x, t) so that we would havedx′ = fxdx+ ftdt where fx is the
partial derivatve off with respect tox, and similarly for ft. Homogeniety then means that these partial derivatives are
constants. In other words, a small change inx andt produces thesamechange inx′ no matter where in space or time
the change takes place.
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our origin of the spatial coordinates to be, not should it matter when we choose the orgin of time,
i.e. the time that we choose to set ast = 0.

Now consider the originO′ of S′. This point is atx′ = 0 which, if substituted into Eq. (4.3) gives

Ax+ Bt = 0 (4.5)

wherex and t are the coordinates ofO′ as measured inS, i.e. at timet the originO′ has theX
coordinatex, wherex andt are related byAx+ Bt = 0. This can be written

x
t
= −

B
A

(4.6)

but x/t is just the velocity of the originO′ as measured inS. This origin will be moving at the
same speed as the whole reference frame, so then we have

−
B
A
= vx (4.7)

which givesB = −vxA which can be substituted into Eq. (4.3) to give

x′ = A(x− vxt). (4.8)

If we now solve Eq. (4.3) and Eq. (4.4) forx andt we get

x =
Dx′ + vxAt′

AD− BC
(4.9)

t =
At′ −Cx′

AD− BC
. (4.10)

If we now consider the originO of the reference frameS, that is, the pointx = 0, and apply the
same argument as just used above, and noting thatO will be moving with a velocity−vx with
respect toS′, we get

−
vxA
D
= −vx (4.11)

which then gives
A = D (4.12)

and hence the transformations Eq. (4.9) and Eq. (4.10) fromS′ to S will be, after substituting for
D andB:

x =
(x′ + vxt′)
A+ vxC

t =
(t′ − (C/A)x′)

A+ vxC


(4.13)

which we can compare with the original transformation fromS to S′

x′ = A(x− vxt)

t′ = A(t + (C/A)x).

 (4.14)

At this point we will introduce a notation closer to the conventional notation i.e. we will now write

A = γ and C/A = K. (4.15)
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so that the sets of equations above become

x =
(x′ + vxt′)
γ(1+ vxK)

t =
(t′ − Kx′)
γ(1+ vxK)


(4.16)

and
x′ = γ(x− vxt)

t′ = γ(t + Kx).

 (4.17)

We now want to make use of some of the symmetry properties listed above to learn more about
γ and K. In doing this, it should be understood that the quantitiesγ and K are not constants.
While it is true that they do not depend onx or t, they still potentially depend onvx. However, the
assumed isotropy of space means thatγ cannot depend on thesignof vx. If we write γ ≡ γ(vx)
andγ′ ≡ γ(−vx), (with a similar meaning forK andK′), this means that3

γ = γ′. (4.18)

A symmetry property we have already used is that ifS′ is moving with a velocityvx relative toS,
thenS must be moving with velocity−vx relative toS′. We now make use of this fact to reverse
the transformation equations Eq. (4.17) to expressx and t in terms ofx′ and t′. We do this by
making the substitutionsvx→ −vx, x↔ x′, andt ↔ t′, which leads to

x = γ(x′ + vxt
′)

t = γ(t′ + K′x′).

 (4.19)

By comparison with Eq. (4.16) we have

γ =
1

γ(1+ vxK)
and

−K
γ(1+ vxK)

= γK′ (4.20)

which tells us that

γ2 =
1

1+ vxK
and K = −K′. (4.21)

The second of these two equations tells us that we can writeK as

K = −vx/V
2 (4.22)

whereV2 will not depend on the sign ofvx though it could still depend onvx. We are motivated
to write K in this way because by doing so the quantityV will have the units of velocity, which
will prove to be convenient later. There is nothing physical implied by doing this, it is merely a
mathematical convenience. Thus we have

γ =
1√

1− (vx/V)2
. (4.23)

3To see this, suppose we have a third reference frameS′′ which is moving with a velocity−vx relative toS. We
then have the two transformation equationsx′ = γ(x− vxt) andx′′ = γ′(x+ vxt). Now suppose some event occurs at the
origin of S, i.e. atx = 0 at a timet as measured inS. The position of this event as measured inS′ will be x′ = −γvxt
while, as measured inS′′, would be atx′′ = γ′vxt. By the assumed isotropy of space we ought to haveγvxt = γ′vxt i.e.
γ = γ′.



Chapter 4 Einsteinian Relativity 27

The transformation laws now take the form

x′ =
x− vxt√

1− (vx/V)2

t′ =
t − (vx/V2)x√

1− (vx/V)2
.


(4.24)

To determine the dependence ofV on vx, we will suppose there is a further reference frameS′′

moving with a velocity ¯vx relative toS′. The same argument as used above can be applied once
again to give

x′′ =
x′ − v̄xt′√
1− (v̄x/V)2

t′′ =
t′ − (v̄/V

2
x)x
′√

1− (v̄x/V)2


(4.25)

where we have introduced a new parameterV. If we now substitute forx′, y′, z′ andt′ in terms of
x, y, z, andt from Eq. (4.24) and rearrange the terms we get

x′′ =
1+ v̄xvx/V2√[

1− v2
x/V2][1− v̄2

x/V
2]

[
x−

vx + v̄x

1+ vxv̄x/V2
t

]
(4.26)

t′′ =
1+ v̄xvx/V

2√[
1− v2

x/V2][1− v̄2
x/V

2]
[
t −

vx/V2 + v̄x/V
2

1+ v̄xvx/V2
x

]
. (4.27)

This is now the transformation law relating the coordinates of events inS to their coordinates in
S′′. The transformation equations fory andzcontain no surprises and are not included here – it is
the transformation equations forx andt that contain the information required. As it stands, these
equations, Eq. (4.26) and Eq. (4.27), contain a complicated mess of terms which look very little
like the transformations Eq. (4.24) or Eq. (4.25). But, if we are to accept that the transformation
betweenS andS′′ should be of the same mathematical form as that betweenS andS′, and that
betweenS′ andS′′, then we need to look for a condition under which this is true. The easiest
way to see what is required is to note that the transformation equations forx andt in Eq. (4.24),
are multiplied by the same factor (1− (vx/V)2)1/2 on the right hand side. So at the very least, we
should require that the corresponding factors in Eq. (4.26) and Eq. (4.27) should be equal, putting
to one side for the present that fact that even if they are set to equal each other, they still do not
look much like (1− (vx/V)2)1/2 ! So, proceeding on this basis, we are requiring

1+ v̄xvx/V2√[
1− v2

x/V2][1− v̄2
x/V

2] = 1+ v̄xvx/V
2√[

1− v2
x/V2][1− v̄2

x/V
2] (4.28)

from which it immediately follows that

V2 = V
2

(4.29)

i.e. the velocity parameter has to be the same for both transformations. As these transformations
are arbitrary, we conclude thatV2 has to be a universal constant independent of the relativity ve-
locities of the reference frames. If we then use this fact to simplify all the other terms in Eq. (4.26)
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and Eq. (4.27) we get

x′′ =
x− v′′x t√

1− (v′′x /V)2

t′′ =
t − v′′x /V

2x√
1− (v′′x /V)2

.


(4.30)

which is exactly of the form of Eq. (4.24) with

v′′x =
vx + v̄x

1+ vxv̄x/V2
(4.31)

identified as the velocity of the reference frameS′′ relative toS.

Thus, the result Eq. (4.24) is the required transformation, withV now shown to be a constant,
though one whose value is yet to be determined. This is a remarkable and very general result
that depends purely on the assumed homogeneity and isotropy of space. At no stage have we
mentioned light, or any other physical quantity for that matter, and yet we have been able to
pin down the transformation laws relating coordinate systems for two different inertial frames of
reference at least as far as there being only one undetermined quantity left, namelyV. This result
is one that could have been derived well before Einstein, though the physical or experimental
motivation to look for something like this was simply not present.

This parameterV must be looked on as representing some fundamental property of space and
time – in fact, it is possible to show from what we have done so far that it represents a ‘speed
limit’ for any moving body that is built into the structure of space and time. More information is
needed to determine its value, but we basically have two choices: eitherV is finite but non-zero,
or it is infinite. If we were to chooseV = ∞, then we find that these transformation equations
reduce to the Galilean transformation Eq. (3.1)! However, we have yet to make use of Einstein’s
second proposal. In doing so we are able to determineV, and find thatV has an experimentally
determinable, finite value.

To this end, let us suppose that when the two origins coincide, the clocks atO andO′ both read
zero, and also suppose that at that instant, a flash of light is emitted from the coincident pointsO
andO′. In the frame of referenceS this flash of light will be measured as lying on a spherical
shell centred onO whose radius is growing at the speedc. However, by the second postulate, in
the frame of referenceS′, the flash of light will also be measured as lying on a spherical shell
centred onO′ whose radius is also growing at the speedc. Thus, inS, if the spherical shell passes
a pointP with spatial coordinates (x, y, z) at timet, then by our definition of synchronization we
must have:

x2 + y2 + z2 = c2t2

i.e.
x2 + y2 + z2 − c2t2 = 0. (4.32)

The flash of light passing the pointP in space at timet then defines an event with spacetime
coordinates (x, y, z, t). This event will have a different set of coordinates (x′, y′, z′, t′) relative to the
frame of referenceS′ but by our definition of synchronization these coordinates must also satisfy:

x′2 + y′2 + z′2 − c2t′2 = 0. (4.33)

We want to find how the two sets of coordinates (x, y, z, t) and (x′, y′, z′, t′) are related in order for
both Eq. (4.32) and Eq. (4.33) to hold true. But we know quite generally that these coordinates
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must be related by the transformation laws Eq. (4.24) obtained above. If we substitute these
expressions into Eq. (4.33) we get[

1− (cvx/V
2)2

]
x2 +

[
1− (vx/V)2

]
y2 +

[
1− (vx/V)2

]
z2

−
[
1− (vx/c)2

]
(ct)2 − 2vx

[
1− (c/V)2

]
xt = 0. (4.34)

This equation must reduce to Eq. (4.32). Either by working through the algebra, or simply by trial
and error, it is straightforward to confirm that this requiresV = c, i.e. the general transformation
Eq. (4.24) withV = c, guarantees that the two spheres of light are expanding at the same rate, that
is at the speedc, in both inertial frames of reference. Now writing the quantityγ as

γ =
1√

1− (vx/c)2
(4.35)

we are left with the final form of the transformation law consistent with light always being ob-
served to be travelling at the speedc in all reference frames:

x′ = γ(x− vxt)

y′ = y

z′ = z

t′ = γ
(
t − (vx/c

2)x
)
.


(4.36)

These are the equations of the Lorentz transformation. We can find the inverse transformation
either by solving Eq. (4.36) forx, y, z, and t in terms of x′, y′, z′, and t′, or else by simply
recognizing, as was mentioned above in the derivation of this transformation, that ifS′ is moving
with velocity vx relative toS, thenS is moving with velocity−vx relative toS′. Consequently,
all that is required is to exchange the primed and unprimed variables and change the sign ofvx in
Eq. (4.36). The result by either method is

x = γ(x′ + vxt
′)

y = y′

z= z′

t = γ
(
t′ + (vx/c

2)x′
)
.


(4.37)

These equations were first obtained by Lorentz who was looking for a mathematical transforma-
tion that left Maxwell’s equations unchanged in form. However he did not assign any physical
significance to his results. It was Einstein who first realized the true meaning of these equations,
and consequently, with this greater insight, was able to derive them without reference at all to
Maxwell’s equations. The importance of his insight goes to the heart of relativity. Although the
use of a flash of light played a crucial role in deriving the transformation equations, it was intro-
duced as a means by which the value of the unknown parameterV could be determined. The final
result simply establishes a connection between the two sets of space-time coordinates associated
with a given event, this event being the passage of a flash of light past the point (x, y, z) at timet, as
measured inS, or (x′, y′, z′) at timet′, as measured inS′. The transformation equations therefore
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represent a property that space and time must have in order to guarantee that light will always be
observed to have the same speedc in all inertial frames of reference. But given that these trans-
formation equations represent an intrinsic property of space and time, it can only be expected that
the behaviour of other material objects, which may have nothing whatsoever to do with light, will
also be influenced by this fundamental property of space and time. This is the insight that Einstein
had, that the Lorentz transformation was saying something about the properties of space and time,
and the consequent behaviour that matter and forces must have in order to be consistent with these
properties.

Later we will see that the speed of light acts as an upper limit to how fast any material object can
travel, be it light or electrons or rocket ships. In addition, we shall see that anything that travels at
this speedc will always be observed to do so from all frames of reference. Light just happens to
be one of the things in the universe that travels at this particular speed. Subatomic particles called
neutrinos also apparently travel at the speed of light, so we could have formulated our arguments
above on the basis of an expanding sphere of neutrinos! The constantc therefore represents a
characteristic property of space and time, and only less significantly is it the speed at which light
travels.

Two immediate conclusions can be drawn from the Lorentz Transformation. Firstly, suppose that
, vx > c i.e. thatS′ is moving relative toS at a speed greater than the speed of light. In that
case we find thatγ2 < 0 i.e.γ is imaginary so that both position and time in Eq. (4.36) become
imaginary. However position and time are both physical quantities which must be measured as real
numbers. In other words, the Lorentz transformation becomes physically meaningless ifvx > c.
This immediately suggests that it is a physical impossibility for a material object to attain a speed
greater thanc relative to any reference frameS. The frame of reference in which such an object
would be stationary will then also be moving at the speedvx, but as we have just seen, in this
situation the transformation law breaks down. We shall see later how the laws of dynamics are
modified in special relativity, one of the consequences of this modification being that no material
object can be accelerated to a speed greater thanc4.

Secondly, we can consider the form of the Lorentz Transformation in the mathematical limitvx <<

c. We find thatγ ≈ 1 so that Eq. (4.36) becomes the equations of the Galilean Transformation,
Eq. (3.1). (Though this also requires that thex dependent term in the time transformation equation
to be negligible, which it will be over small enough distances). Thus, at low enough speeds, any
unusual results due to the Lorentz transformation would be unobservable.

4.4 Relativistic Kinematics

The Lorentz transformation leads to a number of important consequences for our understanding
of the motion of objects in space and time without concern for how the matter was set into motion,
i.e. the kinematics of matter. Later, we will look at the consequnces for our understanding of the
laws of motion themselves, that is relativistic dynamics.

Perhaps the most startling aspect of the Lorentz Transformation is the appearance of a transfor-
mation for time. The result obtained earlier for the Galilean Transformation agrees with, indeed
it was based on, our ‘common sense’ notion that time is absolute i.e. that time passes in a manner
completely independent of the state of motion of any observer. This is certainly not the case with
the Lorentz Transformation which leads, as we shall see, to the conclusion that moving clocks run
slow. This effect, called time dilation, and its companion effect, length contraction will now be
discussed.

4In principle there is nothing wrong with having an object that is initially travelling with a speed greater thanc. In
this case,c acts as a lower speed limit. Particles with this property, called tachyons, have be postulated to exist, but they
give rise to problems involving causality (i.e. cause and effect) which make their existence doubtful.
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4.4.1 Length Contraction

The first of the interesting consequences of the Lorentz Transformation is that length no longer
has an absolute meaning: the length of an object depends on its motion relative to the frame of
reference in which its length is being measured. Let us consider a rod moving with a velocityvx

relative to a frame of referenceS, and lying along theX axis. This rod is thenstationaryrelative
to a frame of referenceS′ which is also moving with a velocityvx relative toS.

X

Y

Z

X′

Y′

Z′

rod

S′S

vx

Figure 4.4:A rod of length at rest in reference frameS′ which is moving with a velocityvx with respect
to another frameS.

As the rod is stationary inS′, the ends of the rod will have coordinatesx′1 andx′2 which remain
fixed as functions of the time inS′. The length of the rod, as measured inS′ is then

l0 = x′2 − x′1 (4.38)

wherel0 is known as the proper length of the rod i.e.l0 is its length as measured in a frame of
reference in which the rod is stationary. Now suppose that we want to measure the length of
the rod as measured with respect toS. In order to do this, we measure theX coordinates of the
two ends of the rod at the same timet, as measured by the clocks inS. Let x2 andx1 be theX
coordinates of the two ends of the rod as measured inS at this timet. It is probably useful to
be aware that we could rephrase the preceding statement in terms of the imaginary synchronized
clocks introduced in Section 2.2 and Section 4.2 by saying that ‘the two clocks positioned atx2

andx1 both readt when the two ends of the rod coincided with the pointsx2 andx1.’ Turning now
to the Lorentz Transformation equations, we see that we must have

x′1 = γ(x1 − vxt))

x′2 = γ(x2 − vxt).

 (4.39)

We then define the length of the rod as measured in the frame of referenceS to be

l = x2 − x1 (4.40)

where the important point to be re-emphasized is that this length is defined in terms of the positions
of the ends of the rods as measured at the same timet in S. Using Eq. (4.39) and Eq. (4.40) we
find

l0 = x′2 − x′1 = γ(x2 − x1) = γl (4.41)

which gives forl
l = γ−1l0 =

√
1− (vx/c)2l0. (4.42)

But for vx < c √
1− (vx/c)2 < 1 (4.43)
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so that
l < l0. (4.44)

Thus the length of the rod as measured in the frame of referenceS with respect to which the rod
is moving is shorter than the length as measured from a frame of referenceS′ relative to which
the rod is stationary. A rod will be observed to have its maximum length when it is stationary in a
frame of reference. The length so-measured,l0 is known as itsproper length.

This phenomenon is known as the Lorentz-Fitzgerald contraction. It is not the consequence of
some force ‘squeezing’ the rod, but it is a real physical phenomenon with observable physical
effects. Note however that someone who actually looks at this rod as it passes by will not see
a shorter rod. If the time that is required for the light from each point on the rod to reach the
observer’s eye is taken into account, the overall effect is that of making the rod appear as if it is
rotated in space.

4.4.2 Time Dilation

Perhaps the most unexpected consequence of the Lorentz transformation is the way in which our
‘commonsense’ concept of time has to be drastically modified. Consider a clockC′ placed at rest
in a frame of referenceS′ at some pointx′ on theX axis. Suppose once again that this frame is
moving with a velocityvx relative to some other frame of referenceS. At a timet′1 registered by
clockC′ there will be a clockC1 in theS frame of reference passing the position ofC′:

X

X′

Z
Z′

ClockC1 readst1

ClockC′ readst′1

vx

x′1

S
S′

Figure 4.5:Clock C′ stationary inS′ readst′1 when it passes clockC1 stationary inS, at which instant it
readst1.

The time registered byC1 will then be given by the Lorentz Transformation as

t1 = γ(t′1 + vxx′/c2). (4.45)

Some time later, clockC′ will read the timet′2 at which instant adifferentclockC2 in S will pass
the positionx′1 in S′.

X

x′1

vx

Z

ClockC2 readst2

ClockC′ readst′2

X′

Z′

Figure 4.6:ClockC′ stationary inS′ readst′2 when it passes clockC2 stationary inS, at which instantC2

readst2.
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This clockC2 will read
t2 = γ(t′2 + vxx′/c2). (4.46)

Thus, from Eq. (4.45) and Eq. (4.46) we have

∆t = t2 − t1 = γ(t′2 − t′1) = γ∆t′. (4.47)

Once again, since

γ =
1√

1− (vx/c)2
> 1 if vx < c (4.48)

we have
∆t > ∆t′. (4.49)

In order to interpret this result, suppose that∆t′ is the time interval between two ‘ticks’ of the
clockC′. Then according to the clocks inS, these two ‘ticks’ are separated by a time interval∆t
which, by Eq. (4.49) is> ∆t′. Thus the time interval between ‘ticks’ is longer, as measured by the
clocks inS, than what it is measured to be inS′. In other words, from the point of view of the
frame of referenceS, the clock (and all the clocks inS′) are running slow. It appears fromS that
time is passing more slowly inS′ than it is inS. This is the phenomenon oftime dilation. A clock
will be observed to run at its fastest when it is stationary in a frame of reference. The clock is then
said to be measuringproper time.

This phenomenon is just as real as length contraction. One of its best known consequences is that
of the increase in the lifetime of a radioactive particle moving at a speed close to that of light.
For example, it has been shown that if the lifetime of a species of radioactive particle is measured
while stationary in a laboratory to beT′, then the lifetime of an identical particle moving relative
to the laboratory is found to be given byT = γT′, in agreement with Eq. (4.47) above.

Another well known consequence of the time dilation effect is the so-called twin or clock paradox.
The essence of the paradox can be seen if we first of all imagine two clocks moving relative to
each other which are synchronized when they pass each other. Then, in the frame of reference of
one of the clocks,C say, the other clock will be measured as running slow, while in the frame of
reference of clockC′, the clockC will also be measured to be running slow5. This is not a problem
until one of the clocks does a U-turn in space (with the help of rocket propulsion, say) and returns
to the position of the other clock. What will be found is that the clock that ‘came back’ will have
lost time compared to the other. Why should this be so, as each clock could argue (if clocks could
argue) that from its point of view it was the other clock that did the U-turn? The paradox can be
resolved in many ways. The essence of the resolution, at least for the version of the clock paradox
being considered here, is that there is not complete symmetry between the two clocks. The clock
that turns back must have undergone acceleration in order to turn around. The forces associated
with this acceleration will only be experienced by this one clock so that even though each clock
could argue that it was the other that turned around and came back, it was only one clock that
experienced an acceleration. Thus the two clocks have different histories between meetings and it
is this asymmetry that leads to the result that the accelerated clock has lost time compared to the
other. Of course, we have not shown how the turning around process results in this asymmetry: a
detailed analysis is required and will not be considered here.

4.4.3 Simultaneity

Another consequence of the transformation law for time is that events which occur simultaneously
in one frame of reference will not in general occur simultaneously in any other frame of reference.

5This appears to be paradoxical – how canbothclocks consider the other as going slow? It should be borne in mind
that the clocksC andC′ are not being compared directly against one another, rather the time on each clock is being
compared against the time registered on the collection of clocks that it passes in the other reference frame
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Thus, consider two events 1 and 2 which are simultaneous inS i.e. t1 = t2, but which occur at two
different placesx1 andx2. Then, inS′, the time interval between these two events is

t′2 − t′1 = γ(t2 − vxx2/c
2) − γ(t1 − vxx1/c

2)

= γ(x1 − x2)vx/c
2

, 0 asx1 , x2. (4.50)

Heret′1 is the time registered on the clock inS′ which coincides with the positionx1 in S at the
instantt1 that the event 1 occurs and similarly fort′2. Thus events which appear simultaneous inS
are not simultaneous inS′. In fact the order in which the two events 1 and 2 are found to occur
in will depend on the sign ofx1 − x2 or vx. It is only when the two events occur at the same point
(i.e. x1 = x2) that the events will occur simultaneously in all frames of reference.

4.4.4 Transformation of Velocities (Addition of Velocities)

Suppose, relative to a frameS, a particle has a velocity

u = uxi + uyj + uzk (4.51)

whereux = dx/dt etc. What we require is the velocity of this particle as measured in the frame of
referenceS′ moving with a velocityvx relative toS. If the particle has coordinatex at timet in S,
then the particle will have coordinatex′ at timet′ in S′ where

x = γ()x′ + vxt
′) andt = γ(t′ + vxx′/c2). (4.52)

If the particle is displaced to a new positionx+ dx at timet + dt in S, then inS′ it will be at the
positionx′ + dx′ at timet′ + dt′ where

x+ dx= γ
(
x′ + dx′ + vx(t

′ + dt′)
)

t + dt = γ
(
t′ + dt′ + vx(x

′ + dx′)/c2)
)

and hence

dx= γ(dx′ + vxdt′)

dt = γ(dt′ + vxdx′/c2)

so that

ux =
dx
dt
=

dx′ + vxdt′

dt′ + vxdx′/c2

=

dx′
dt′ + vx

1+ vx
c2

dx′
dt′

=
u′x + vx

1+ vxu′x/c2
(4.53)

whereu′x = dx′/dt′ is theX velocity of the particle in theS′ frame of reference. Similarly, using
y = y′ andz= z′ we find that

uy =
u′y

γ(1+ vxu′x/c2)
(4.54)

uz =
u′z

γ(1+ vxu′x/c2)
. (4.55)
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The inverse transformation follows by replacingvx→ −vx interchanging the primed and unprimed
variables. The result is

u′x =
ux − vx

1− vxux/c2

u′y =
uy

γ(1− vxux/c2)

u′z =
uz

γ(1− vxux/c2)
.


(4.56)

In particular, ifux = c anduy = uz = 0, we find that

u′x =
c− vx

1− vx/c
= c (4.57)

i.e., if the particle has the speedc in S, it has the same speedc in S′. This is just a restatement
of the fact that if a particle (or light) has a speedc in one frame of reference, then it has the same
speedc in all frames of reference.

Now consider the case in which the particle is moving with a speed that is less thatc, i.e. suppose
uy = uz = 0 and|ux| < c. We can rewrite Eq. (4.56) in the form

u′x − c =
ux − c

1− uxvx/c2
− c

=
(c+ vx)(c− vx)
c(1− vxux/c2)

. (4.58)

Now, if S′ is moving relative toS with a speed less thanc, i.e. |vx| < c, then along with|ux| < c it
is not difficult to show that the right hand side of Eq. (4.58) is always negative i.e.

u′x − c < 0 if |ux| < c, |vx| < c (4.59)

from which followsu′x < c.

Similarly, by writing

u′x + c =
ux − vx

1− uxvx/c2
+ c

=
(c+ ux)(c− vx)
c(1− vxux/c2)

(4.60)

we find that the right hand side of Eq. (4.60) is always positive provided|ux| < c and|vx| < c i.e.

u′x + c > 0 if |ux| < c, |vx| < c (4.61)

from which followsu′x > −c. Putting together Eq. (4.59) and Eq. (4.61) we find that

|u′x| < c if |ux| < c and|vx| < c. (4.62)

What this result is telling us is that if a particle has a speed less thanc in one frame of reference,
then its speed is always less thanc in any other frame of reference, provided this other frame
of reference is moving at a speed less thanc. As an example, consider two objectsA and B
approaching each other,A at a velocityux = 0.99c relative to a frame of referenceS, and B
stationary in a frame of referenceS′ which is moving with a velocityvx = −0.99c relative toS.
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X

X′

Z
S

A

ux = 0.99c

Z′

S′

B

vx = −0.99c

Figure 4.7:ObjectB stationary in reference frameS′ which is moving with a velocityvx = −0.99c relative
to reference frameS. ObjectA is moving with velocityux = 0.99c with respect to reference frameS.

According to classical Newtonian kinematics,B will measureA as approaching at a speed of
1.98c. However, according to the Einsteinian law of velocity addition, the velocity ofA relative to
B, i.e. the velocity ofA as measured in frameS′ is, from Eq. (4.56)

u′x =
0.99c− (−0.99c)

1+ (0.99)2
= 0.99995c

which is, of course, less thanc, in agreement with Eq. (4.62).

In the above, we have made use of the requirement that all speeds be less than or equal toc. To
understand physically why this is the case, it is necessary to turn to consideration of relativistic
dynamics.

4.5 Relativistic Dynamics

Till now we have only been concerned with kinematics i.e. what we can say about the motion of
the particle without consideration of its cause. Now we need to look at the laws that determine
the motion i.e. the relativistic form of Newton’s Laws of Motion. Firstly, Newton’s First Law is
accepted in the same form as presented in Section 2.2.1. However two arguments can be presented
which indicate that Newton’s Second Law may need revision. One argument only suggests that
something may be wrong, while the second is of a much more fundamental nature. Firstly, accord-
ing to Newton’s Second Law if we apply a constant force to an object, it will accelerate without
bound i.e. up to and then beyond the speed of light. Unfortunately, if we are going to accept the
validity of the Lorentz Transformation, then we find that the factorγ becomes imaginary i.e. the
factorγ becomes imaginary. Thus real position and time transform into imaginary quantities in the
frame of reference of an object moving faster than the speed of light. This suggests that a problem
exists, though it does turn out to be possible to build up a mathematical theory of particles moving
at speeds greater thanc (tachyons).

The second difficulty with Newton’s Laws arise from the result, derived from the Second and
Third laws, that in an isolated system, the total momentum of all the particles involved is constant,
where momentum is defined, for a particle moving with velocityu and having massm, by

p = mu (4.63)

The question then is whether or not this law of conservation of momentum satisfies Einstein’s first
postulate, i.e. with momentum defined in this way, is momentum conserved in all inertial frames
of reference? To answer this, we could study the collision of two bodies
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m1 m2

u1

before

u2

m2

m1

ū2

ū1

after

Figure 4.8:Collision between two particles used in discussing the conservation of momentum in different
reference frames.

and investigate whether or not we always find that

m1u1 +m2u2 = m1ū1 +m2ū2 (4.64)

in every inertial frame of reference. Recall that the velocities must be transformed according to
the relativistic laws given by Eq. (4.56). If, however, we retain the Newtonian principle that the
mass of a particle is independent of the frame of reference in which it is measured (see Section
3.3) we find that Eq. (4.64) doesnot hold true in all frames of reference – one look at the complex
form of the velocity transformation formulae would suggest this conclusion. Thus the Newtonian
definition of momentum and the Newtonian law of conservation of momentum are inconsistent
with the Lorentz transformation, even though at very low speeds (i.e. very much less than the speed
of light) these Newtonian principles are known to yield results in agreement with observation
to an exceedingly high degree of accuracy. So, instead of abandoning the momentum concept
entirely in the relativistic theory, a more reasonable approach is to search for a generalization of
the Newtonian concept of momentum in which the law of conservation of momentum is obeyed
in all frames of reference. We do not know beforehand whether such a generalization even exists,
and any proposals that we make can only be justified in the long run by the success or otherwise
of the generalization in describing what is observed experimentally.

4.5.1 Relativistic Momentum

Any relativistic generalization of Newtonian momentum must satisfy two criteria:

1. Relativistic momentum must be conserved in all frames of reference.

2. Relativistic momentum must reduce to Newtonian momentum at low speeds.

The first criterion must be satisfied in order to satisfy Einstein’s first postulate, while the second
criterion must be satisfied as it is known that Newton’s Laws are correct at sufficiently low speeds.
By a number of arguments, the strongest of which being based on arguments concerning the sym-
metry properties of space and time, a definition for the relativistic momentum of a particle moving
with a velocityu as measured with respect to a frame of referenceS, that satisfies these criteria
can be shown to take the form

p =
m0u√

1− u2/c2
(4.65)

wherem0 is the rest mass of the particle, i.e. the mass of the particle when at rest, and which can be
identified with the Newtonian mass of the particle. With this form for the relativistic momentum,
Einstein then postulated that, for a system of particles:
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The total momentum of a system of particles is always conserved in all frames of
reference, whether or not the total number of particles involved is constant.

The above statement of the law of conservation of relativistic momentum generalized to apply to
situations in which particles can stick together or break up (that is, be created or annihilated) is
only a postulate whose correctness must be tested by experiment. However, it turns out that the
postulate above, with relativistic momentum defined as in Eq. (4.65) is amply confirmed experi-
mentally.

We note immediately that, foru << c, Eq. (4.65) becomes

p = m0u (4.66)

which is just the Newtonian form for momentum, as it should be.

It was once the practice to write the relativistic momentum, Eq. (4.65), in the form

p = mu (4.67)

where
m=

m0√
1− u2/c2

(4.68)

which leads us to the idea that the mass of a body (m) increases with its velocity. However,
while a convenient interpretation in certain instances, it is not a recommended way of thinking in
general since the (velocity dependent) mass defined in this way does not always behave as might
be expected. It is better to considerm0 as being an intrinsic property of the particle (in the same
way as its charge would be), and that it is the momentum that is increased by virtue of the factor
in the denominator in Eq. (4.65).

Having now defined the relativistic version of momentum, we can now proceed towards setting up
the relativistic ideas of force, work, and energy.

4.5.2 Relativistic Force, Work, Kinetic Energy

All these concepts are defined by analogy with their corresponding Newtonian versions. Thus
relativistic force is defined as

F =
dp
dt

(4.69)

a definition which reduces to the usual Newtonian form at low velocities. This force will do work
on a particle, and therelativistic workdone byF during a small displacementdr is, once again
defined by analogy as

dW= F · dr (4.70)

The rate at whichF does work is then
P = F · u (4.71)

and we can introduce the notion of relativistic kinetic energy by viewing the work done byF as
contributing towards the kinetic energy of the particle i.e.

P =
dT
dt
= F · u (4.72)
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whereT is therelativistic kinetic energyof the particle. We can write this last equation as

dT
dt
= F · u = u ·

dp
dt

= u ·
d
dt

m0u√
1− u2/c2

=

m0u ·
du
dt√

1− u2/c2
+

m0u · uu
du
dt

c2
√

1− u2/c2

But

u ·
du
dt
= u

du
dt

(4.73)

and hence

dT
dt
=

[
m0√

1− u2/c2
+

m0u2/c2√
(1− u2/c2)3

]
u

du
dt

=
m0√

(1− u2/c2)3
u

du
dt

so that we end up with
dT
dt
=

d
dt

[
m0c2√

1− u2/c2

]
. (4.74)

Integrating with respect tot gives

T =
m0c2√

1− u2/c2
+ constant. (4.75)

By requiring thatT = 0 for u = 0, we find that

T =
m0c2√

1− u2/c2
−m0c2. (4.76)

Interestingly enough, if we suppose thatu << c, we find that, by the binomial approximation6

1√
1− u2/c2

= (1− u2/c2)−
1
2 ≈ 1+

u2

2c2
(4.77)

so that
T ≈ m0c2(1+ u2/c2) −m0c2 ≈ 1

2m0c2 (4.78)

which, as should be the case, is the classical Newtonian expression for the kinetic energy of a
particle of mass moving with a velocityu.

6The binomial approximation is (1+ x)n ≈ 1+ nx if x << 1.
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4.5.3 Total Relativistic Energy

We can now define a quantityE by

E = T +m0c2 =
m0c2√

1− u2/c2
. (4.79)

This quantityE is known as thetotal relativistic energyof the particle of rest massm0. It is all
well and good to define such a thing, but, apart from the neatness of the expression, is there any
real need to introduce such a quantity? In order to see the value of defining the total relativistic
energy, we need to consider the transformation of momentum between different inertial framesS
andS′. To this end consider

px =
m0c2√

1− u2/c2
(4.80)

where

u =
√

u2
x + u2

y + u2
z (4.81)

and whereu is the velocity of the particle relative to the frame of referenceS. In terms of the
velocityu′ of this particle relative to the frame of referenceS′ we can write

ux =
u′x + vx

1+ u′xvx/c2
uy =

u′y
γ(1+ u′xvx/c2)

uz =
u′z

γ(1+ u′xvx/c2)
(4.82)

with

γ =
1√

1− v2
x/c2

(4.83)

as before. After a lot of exceedingly tedious algebra, it is possible to show that√
1− u2/c2 =

√
1− u′2/c2

√
1− v2

x/c2

1+ u′xvx/c2
(4.84)

so that, using Eq. (4.82), Eq. (4.83) and Eq. (4.84) we find

px =
m0(u′x + vx)√

(1− u′2/c2)(1− v2
x/c2)

= γ

[
m0u′x√

1− u′2/c2
+ vx

( m0√
1− u′2/c2

)]
which we can readily write as

px = γ
[
p′x + vx(E

′/c2)
]

(4.85)

i.e. we see appearing the total energyE′ of the particle as measured inS′.

A similar calculation forpy andpz yields

py = p′y andpz = p′z (4.86)

while for the energyE we find

E =
m0c2√

1− u2/c2

=
m0c2√

1− u′2/c2
·

1+ u′xvx/c2√
1− v2

x/c2

= γ
[ m0c2√

1− u′2/c2
+

m0u′xvx√
1− u′2/c2

]



Chapter 4 Einsteinian Relativity 41

which we can write as
E = γ

[
E′ + p′xvx

]
. (4.87)

Now consider the collision between two particles 1 and 2. Let theX components of momentum of
the two particles bep1x andp2x relative toS. Then the total momentum inS is

Px = p1x + p2x (4.88)

wherePx is, by conservation of relativistic momentum, a constant, i.e.Px stays the same before
and after any collision between the particles. However

p1x + p2x = γ
(
p′1x + p′2x

)
+ γ

(
E′1 + E′2

)
vx/c

2 (4.89)

wherep′1x andp′2x are theX component of momentum of particles 1 and 2 respectively, whileE′1
andE′2 are the energies of particles 1 and 2 respectively, all relative to frame of referenceS′. Thus
we can write

Px = γP′x + γ
(
E′1 + E′2

)
vx/c

2. (4.90)

Once again, as momentum is conserved in all inertial frames of reference, we know thatP′x is also
a constant i.e. the same before and after any collision. Thus we can conclude from Eq. (4.90) that

E′1 + E′2 = constant (4.91)

i.e. the total relativistic energy inS′ is conserved. But sinceS′ is an arbitrary frame of reference,
we conclude that the total relativistic energy is conserved in all frames of reference (though of
course the conserved value would in general be different in different frames of reference). Since,
as we shall see later, matter can be created or destroyed, we generalize this to read:

The total relativistic energy of a system of particles is always conserved in all frames
of reference, whether or not the total number of particles remains a constant.

Thus we see that conservation of relativistic momentum implies conservation of total relativistic
energy in special relativity whereas in Newtonian dynamics, they are independent conditions.
Nevertheless, both conditions have to be met in when determining the outcome of any collision
between particles, i.e. just as in Newtonian dynamics, the equations representing the conservation
of energy and momentum have to be employed.

A useful relationship between energy and momentum can also be established. Its value lies both
in treating collision problems and in suggesting the existence of particles with zero rest mass. The
starting point is the expression for energy

E =
m0c2√

1− u2/c2
(4.92)

from which we find

E2 =
m2

0c4

1− u2/c2

=
m0c4

[
1− u2/c2 + u2/c2

]
1− u2/c2

so that

E2 = m2
0c4 +

m0u2

1− u2/c2
· c2. (4.93)
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But
p =

m0u√
1− u2/c2

and hence

p2 = p · p =
m0u2

1− u2/c2

which can be combined with Eq. (4.93) to give

E2 = p2c2 +m2
0c4. (4.94)

We now will use the above concept of relativistic energy to establish the most famous result of
special relativity, the equivalence of mass and energy.

4.5.4 Equivalence of Mass and Energy

This represents probably the most important result of special relativity, and gives a deep physical
meaning to the concept of the total relativistic energyE. To see the significance ofE in this regard,
consider the breakup of a body of rest massm0 into two pieces of rest massesm01 andm02:

m01 m02

u1 u2

m0

Figure 4.9:Break up of a body of rest massm0 into two parts of rest massesm01 andm02, moving with
velocitiesu1 andu2 relative to the rest frame of the original object.

We could imagine that the original body is a radioactive nucleus, or even simply two masses
connected by a coiled spring. If we suppose that the initial body is stationary in some frameS,
and the debris flies apart with velocitiesu1 andu2 relative toS then, by the conservation of energy
in S:

E = m0c2 = E1 + E2

=
m01c2√
1− u2

1/c
2

m02c2√
1− u2

2/c
2

so that

(m0 −m01−m02)c
2 =m01c

2
[ 1√

1− u2
1/c

2
− 1

]

+m02c
2
[ 1√

1− u2
2/c

2
− 1

]

=T1 + T2 (4.95)
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whereT1 andT2 are the relativistic kinetic energies of the two masses produced. Quite obviously,
T1 andT2 > 0 since

1√
1− u2

1/c
2
− 1 > 0 (4.96)

and similarly for the other term and hence

m0 −m01−m02 > 0 (4.97)

or
m0 < m01+m02. (4.98)

What this result means is that the total rest mass of the two separate masses is less than that of the
original mass. The difference,∆m say, is given by

∆m=
T1 + T2

c2
. (4.99)

We see therefore that part of the rest mass of the original body has disappeared, and an amount of
kinetic energy given by∆mc2 has appeared. The inescapable conclusion is that some of the rest
mass of the original body has been converted into the kinetic energy of the two masses produced.

The interesting result is that none of the masses involved need to be travelling at speeds close to
the speed of light. In fact, Eq. (4.99) can be written, foru1,u2 << c as

∆m=
1
2m01u2

1 +
1
2m02u2

2

c2
(4.100)

so that only classical Newtonian kinetic energy appears. Indeed, in order to measure the mass
loss∆m, it would be not out of the question to bring the masses to rest in order to determine their
rest masses. Nevertheless, the truly remarkable aspect of the above conclusions is that it has its
fundamental origin in the fact that there exists a universal maximum possible speed, the speed
of light which is built into the structure of space and time, and this structure ultimately exerts an
effect on the properties of matter occupying space and time, that is, its mass and energy.

The reverse can also take place i.e. matter can be created out of energy as in, for instance, a
collision between particles having some of their energy converted into new particles as in the
proton-proton collision

p+ p→ p+ p+ p+ p̄

where a further proton and antiproton ( ¯p) have been produced.

A more mundane outcome of the above connection between energy and mass is that rather than
talking about the rest mass of a particle, it is often more convenient to talk about its rest energy.
A particle of rest massm0 will, of course, have a rest energym0c2. Typically the rest energy (or
indeed any energy) arising in atomic, nuclear, or elementary physics is given in units of electron
volts. One electron volt (eV) is the energy gained by an electron accelerated through a potential
difference of 1 volt i.e.

1 eV= 1.602× 10−19 Joules.

An example of the typical magnitudes of the rest energies of elementary particles is that of the
proton. With a rest mass ofmp = 1.67× 10−33 kg, the proton has a rest energy of

mpc2 = 938.26 MeV.
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4.5.5 Zero Rest Mass Particles

For a single particle, rest massm0, its momentump and energyE are related by the expression:

E2 = p2c2 + M2
0c4.

This result allows us to formally take the limit ofm0→ 0 while keepingE andp fixed. The result
is a relationship between energy and momentum for a particle of zero rest mass. In this limit, with
E, p , 0, we have

E = pc= |p|c (4.101)

i.e. p is the magnitude of the momentum vectorp. If we rearrange Eq. (4.79) to read

E
√

1− u2/c2 = m0c2

and if we then letm0→ 0 with E , 0, we must have√
1− u2/c2→ 0

so that, in the limit ofm0→ 0, we find that

u = c. (4.102)

Thus, if there exists particles of zero rest mass, we see that their energy and momentum are related
by Eq. (4.101) and that they always travel at the speed of light. Particles with zero rest mass
need not exist since all that we have presented above is a mathematical argument. However it
turns out that they do indeed exist: the photon (a particle of light) and the neutrino, though recent
research in solar physics seems to suggest that the neutrino may in fact have a non-zero, but almost
immeasurably tiny mass. Quantum mechanics presents us with a relationship between frequency
f of a beam of light and the energy of each photon making up the beam:

E = h f = ~ω (4.103)



Chapter 5

Geometry of Flat Spacetime

T theory of relativity is a theory of space and time and as such is a geometrical theory, though
the geometry of space and time together is quite different from the Euclidean geometry of

ordinary 3-dimensional space. Nevertheless it is found that if relativity is recast in the language
of vectors and ”distances” (or preferably ”intervals”) a much more coherent picture of the content
of the theory emerges. Indeed, relativity is seen to be a theory of the geometry of the single
entity, ‘spacetime’, rather than a theory of space and time. Furthermore, without the geometrical
point-of-view it would be next to impossible to extend special relativity to include transformations
between arbitrary (non-inertial) frames of reference, which ultimately leads to the general theory
of relativity, the theory of gravitation. In order to set the stage for a discussion of the geometrical
properties of space and time, a brief look at some of the more familiar ideas of geometry, vectors
etc in ordinary three dimensional space is probably useful.

5.1 Geometrical Properties of 3 Dimensional Space

For the present we will not be addressing any specifically relativistic problem, but rather we will
concern ourselves with the issue of fixing the position in space of some arbitrary point. To do this
we could, if we wanted to, imagine a suitable set of rulers so that the position of a pointP can be
specified by the three coordinates (x, y, z) with respect to this coordinate system, which we will
call R.

X Y

Z

P1

P2

∆r

Figure 5.1:A displacement vector∆r in space with an arbitrary coordinate systemR.

If we then consider two such pointsP1 with coordinates (x1, y1, z1) and P2 with coordinates
(x2, y2, z2) then the line joining these two points defines a vector∆r which we can write in com-
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ponent form with respect toRas

∆r �

x2 − x1

y2 − y1

z2 − z1


R

(5.1)

where the subscriptR is to remind us that the components are specified relative to the set of
coordinatesR. Why do we need to be so careful? Obviously, it is because we could have, for
instance, used a different set of axesR′ which have been translated and rotated relative to the first:

X

X′

Y
Y′

θ

P1

P2

∆r

Figure 5.2:Displacement vector and two coordinate systems rotated with respect to each other aboutZ
axis through angleθ. The vector has an existence independent of the choice of coordinate systems.

In this case the vector∆r will have new components, but the vector itself willstill be the same
vectori.e.

∆r �

x2 − x1

y2 − y1

z2 − z1


R

�

x′2 − x′1
y′2 − y′1
z′2 − z′1


R′

(5.2)

or

∆r �

∆x
∆y
∆z


R

�

∆x′

∆y′

∆z′


R′

(5.3)

So the components themselves are meaningless unless we know with respect to what coordinate
system they were determined. In fact, the lack of an absolute meaning of the components unless
the set of axes used is specified means that the vector∆r is not so much ‘equal’ to the column
vector as ‘represented by’ the column vectors – hence the use of the dotted equal sign ‘�’ to
indicate ‘represented by’.

The description of the vector in terms of its components relative to some coordinate system is
something done for the sake of convenience. Nevertheless, although the components may change
as we change coordinate systems, what does not change is the vector itself, i.e. it has an existence
independent of the choice of coordinate system. In particular, the length of∆r and the angles
between any two vectors∆r1 and∆r2 will be the same in any coordinate system.

While these last two statements may be obvious, it is important for what comes later to see that
they also follow by explicitly calculating the length and angle between two vectors using their
components in two different coordinate systems. In order to do this we must determine how
the coordinates of∆r are related in the two different coordinate systems. We can note that the
displacement of the two coordinate systems with respect to each other is immaterial as we are
considering differences between vectors thus we only need to worry about the rotation which we
have, for simplicity, taken to be through an angleθ about theZ axis (see the above diagram). The
transformation between the sets of coordinates can then be shown to be given, in matrix form, by∆x′

∆y′

∆z′


R′

=

 cosθ sinθ 0
− sinθ cosθ 0

0 0 1


∆x
∆y
∆z


R

(5.4)
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Using this transformation rule, we can show that

(∆x)2 + (∆y)2 + (∆z)2 = (∆x′)2 + (∆y′)2 + (∆z′)2 (5.5)

where each side of this equation is, obviously, the (distance)2 between the pointsP1 and P2.
Further, for any two vectors∆r1 and∆r2 we find that

∆x1∆x2 + ∆y1∆y2 + ∆z1∆z2 = ∆x′1∆x′2 + ∆y′1∆y′2 + ∆z′1∆z′2 (5.6)

where each side of the equation is the scalar product of the two vectors i.e.∆r1 · ∆r2. This result
tells us that the angle between is the same in both coordinate systems. Thus the transformation
Eq. (5.4) is consistent with the fact that the length and relative orientation of these vectors is
independent of the choice of coordinate systems, as it should be.

It is at this point that we turn things around and say thatanyquantity that has three components
that transform in exactly the same way as∆r under a rotation of coordinate system constitutes a
three-vector. An example is force, for which

F′x
F′y
F′z


R′

=

 cosθ sinθ 0
− sinθ cosθ 0

0 0 1


Fx

Fy

Fz


R

(5.7)

for two coordinate systemsR and R′ rotated relative to each other by an angleθ about theZ-
axis. Other three-vectors are electric and magnetic fields, velocity, acceleration etc. Since the
transformation matrix in Eq. (5.7) is identical to that appearing in Eq. (5.4), any three-vector is
guaranteed to have the same length (i.e. magnitude) and orientation irrespective of the choice of
coordinate system. In other words we can claim that such a three vector has an absolute meaning
independent of the choice of coordinate system used to determine its components.

5.2 Space Time Four-Vectors

What we do now is make use of the above considerations to introduce the idea of a vector to
describe the separation of two events occurring in spacetime. The essential idea is to show that the
coordinates of an event have transformation properties analogous to Eq. (5.4) for ordinary three-
vectors, though with some surprising differences. To begin, we will consider two eventsE1 and
E2 occurring in spacetime. For eventE1 with coordinates (x1, y1, z1, t1) in frame of referenceS
and (x′1, y

′
1, z
′
1, t
′
1) in S′, these coordinates are related by the Lorentz transformation which we will

write as
ct′1 = γct1 −

γvx

c
x1

x′1 = −
γvx

c
ct1 + γx1

y′1 = y1

z′1 = z1


(5.8)

and similarly for eventE2. Then we can write

c∆t′ = c(t′2 − t′1) = γc∆t −
γvx

c
∆x

∆x′ = x′2 − x′1 = −
γvx

c
c∆t + γ∆x

∆y′ = ∆y

∆z′ = ∆z


(5.9)
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which we can write as 
c∆t′

∆x′

∆y′

∆z′


S′

=


γ −γvx/c 0 0

−γvx/c γ 0 0
0 0 1 0
0 0 0 1



c∆t
∆x
∆y
∆z


S

. (5.10)

It is tempting to interpret this equation as relating the components with respect to a coordinate sys-
temS′ of some sort of ‘vector’, to the components with respect to some other coordinate system
S, of the same vector. We would be justified in doing this if this ‘vector’ has the properties, anal-
ogous to the length and angle between vectors for ordinary three-vectors, which are independent
of the choice of reference frame. It turns out that it is ‘length’ defined as

(∆s)2 = (c∆t)2 −
[
(∆x)2 + (∆y)2 + (∆y)2

]
= (c∆t)2 − (∆r )2 (5.11)

that is invariant for different reference frames i.e.

(∆s)2 = (c∆t)2 −
[
(∆x)2 + (∆y)2 + (∆z)2

]
= (c∆t′)2 −

[
(∆x′)2 + (∆y′)2 + (∆z′)2

]
(5.12)

This invariant quantity∆s is known as theinterval between the two eventsE1 andE2. Obviously
∆s is analogous to, but fundamentally different from, the length of a three-vector in that it can be
positive, zero, or negative. We could also talk about the ‘angle’ between two such ‘vectors’ and
show that

(c∆t1)(c∆t2) −
[
∆x1∆x2 + ∆y1∆y2 + ∆z1)∆z2

]
(5.13)

has the same value in all reference frames. This is analogous to the scalar product for three-vectors.
The quantity defined by

∆~s=


c∆t
∆x
∆y
∆z

 (5.14)

is then understood to correspond to a property of spacetime representing the separation between
two events which has an absolute existence independent of the choice of reference frame, and is
known as afour-vector. This four-vector is known as the displacement four-vector, and represents
the displacement in spacetime between the two eventsE1 andE2. In order to distinguish a four-
vector from an ordinary three-vector, a superscript arrow will be used.

As was the case with three-vectors, any quantity which transforms in the same way as∆~s is also
termed a four-vector. For instance, we have shown that

E′/c = γ(E/c) −
γvx

c
px

p′x = −
γvx

c
(E/c) + γpx

p′y = py

p′z = pz


(5.15)

which we can write as 
E′/c
p′x
p′y
p′z

 =


γ −γvx/c 0 0
−γvx/c γ 0 0

0 0 1 0
0 0 0 1



E/c
px

py

pz

 (5.16)

where we see that the same matrix appears on the right hand side as in the transformation law for
∆~s. This expression relates the components, in two different frames of referenceS andS′, of the
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four-momentum of a particle. This four-momentum is, of course, by virtue of this transformation
property, also a four-vector. We can note that the (‘length’)2 of this four-vector is given by

(E/c)2 −
[
p2

x + p2
y + p2

z

]
= (E/c)2 − p2 = (E2 − p2c2)/c2 = m2

0c2 (5.17)

wherem0 is the rest mass of the particle. This quantity is the same (i.e. invariant) in different
frames of reference.

A further four-vector is the velocity four-vector

~v �


cdt/dτ
dx/dτ
dy/dτ
dz/dτ

 (5.18)

where
dτ = ds/c (5.19)

and is known as theproper time interval. This is the time interval measured by a clock in its own
rest frame as it makes its way between the two events an intervaldsapart.

To see how the velocity four-vector relates to our usual understanding of velocity, consider a
particle in motion relative to the inertial reference frameS. We can identify two events,E1 wherein
the particle is at position (x, y, z) at time t, and a second eventE2 wherein the particle is at (x +
dx, y+dy, z+dz) at timet+dt. The displacement in space and time between these events will then
be represented by the four-vectord~s defined in Eq. (5.14). Furthermore, during this time interval
dt as measured inS, the particle undergoes a displacementdr = dxi + dyj + dzk and so has a
velocity

u =
dx
dt

i +
dy
dt

j +
dz
dt

k = uxi + uyj + uzk. (5.20)

The time interval between the eventsE1 andE2 as measured by a clock moving with the particle
will be just the proper time intervaldτ in the rest frame of the particle. We therefore have, by the
time dilation formula

dt =
dτ√

1− (u/c)2
(5.21)

whereu is the speed of the particle. So, if we form the four-velocity to be associated with the two
eventsE1 andE2, we write

~u �


cdt/dτ
dx/dτ
dy/dτ
dz/dτ

 = 1√
1− (u/c)2


c

dx/dt
dy/dt
dz/dt

 = 1√
1− (u/c)2


c
ux

uy

uz

 (5.22)

Thus, ifu << c, the three spatial components of the four velocity reduces to the usual components
of ordinary three-velocity. Note also that the invariant (‘length’)2 of the velocity four-vector is just
c2.

Finally, if we take the expression for the four-velocity and multiply by the rest mass of the particle,
we get

m0~u �
1√

1− (u/c)2


c
ux

uy

uz

 =

E/c
px

py

pz

 (5.23)

which can be recognized as the four momentum defined above.
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We can continue in this way, defining four-acceleration

~a =
d~u
dτ

(5.24)

and the four-force, also known as the Minkowski force~F:

~F =
d~p
dτ
. (5.25)

A direct generalization of the Newtonian definition would have been~F = m0~a, but this definition
is not applicable to zero rest mass particles, hence the more general alternative in Eq. (5.25).

5.3 Minkowski Space

Till now we have represented a frame of referenceS by a collection of clocks and rulers. An
alternative way of doing the same thing is to add a fourth axis, the time axis, ‘at right angles’ to
theX, Y, Z axes. On this time axis we can plot the timet that the clock reads at the location of an
event. Obviously we cannot draw in such a fourth axis, but we can suppress theY, Z coordinates
for simplicity and draw as in Fig. (5.3):

ct

x

E(x, t)

Figure 5.3:An event represented as a point in spacetime.

This representation is known as a spacetime or Minkowski diagram and on it we can plot the
positions in space and time of the various events that occur in spacetime. In particular we can plot
the motion of a particle through space and time. The curve traced out is known as the world line of
the particle. We can note that the slope of such a world line must be greater than the slope of the
world line of a photon since all material particles move with speeds less than the speed of light.
Some typical world lines are illustrated in Fig. (5.4) below.

ct

x

World line of a photon

World line of particle stationary inS

World line of particle moving at speed< c.

Figure 5.4:Diagram illustrating different kinds of world lines.

The above diagram gives the coordinates of events as measured in a frame of referenceS say.
We can also use these spacetime diagrams to illustrate Lorentz transformations from one frame of
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reference to another. Unfortunately, due to the peculiar nature of the interval between two events
in spacetime, the new set of axes for some other frame of referenceS′ is not a simple rotation of
the old axes. The equations for theS′ axes are determined in a straightforawrd fashion from the
Lorentz transformation equations. Thex′ axis is just the line for whicht′ = 0, which gives

ct =
vx

c
x (5.26)

and for thet′ axis, for whichx′ = 0
ct =

c
vx

x. (5.27)

It therefore turns out that these new axes are oblique, as illustrated in Fig. 5.5, and with increasing
speeds ofS′ relative toS, these axes close in on the world line of the photon passing through the
common origin.

ct ct′

x′

x

c2t2 − x2 = −1

c2t2 − x2 = 1

O P

Q Q′

Figure 5.5: Space and time axes for two different ref-
erence frames. The rectilinear axes are for the reference
frameS, the oblique axes those for a reference frameS′

moving with respect toS. The lengthsOP andOQ are
the same on the figure, but ifOP represents a distance of
1 m inS, thenOQ′ represents the same distance inS′.

It should be noted that in deriving these
equations, theγ factor cancels out. But,
as this factor plays an integral role in
the Lorentz transformation, appearing
in both the length contraction and time
dilation formulae, it is clear that it is
not sufficient to simply determine the
new axes inS′ if the spacetime dia-
gram is to be used to compare lengths
or times in the two reference frames.
What also needs to be done is to rescale
the units of time and distance along
eachS′ axis. To put it another way, if
the two eventsO and P on thex axis
are one metre apart, then two pointsO
andQ on thex′

axis which are the same distance apart on the diagram (they are about 1.5 cm in Fig. 5.5) will
not represent a distance of one metre inS′. To see what separation is required on thex′ axis, we
proceed as follows.

The spacetime interval betweenO andP is given by∆s = −1 m2. If we now plot all points that
have the same spacetime separation fromO on this spacetime diagram, we see that these points
will lie on the curve

(ct)2 − x2 = −1 (5.28)

which is the equation of a hyperbola. It will cut thex′ axis (wheret′ = 0) at the pointQ′. But
since the interval is the same in all reference frames, we must also have

(ct′)2 − x′2 = −1 (5.29)

so att′ = 0 we havex′ = 1. Thus, it is the distance betweenO andP′′ that represents a distance of
1 m in S′. A similar argument can be used to determine the scaling along the time axis in theS′

frame, i.e. the point for whichct′ = 1, where the hyperbola (ct)2 − x2 = 1 cuts thect′ axis gives
the unit of time on thect′ axis.
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To illustrate how spacetime diagrams
can be used, we will briefly look at
length contraction. Consider a rod
which is at rest in the reference frame
S, one end atO, the other atP, corre-
sponding to a length of 1 m say. The
world lines of the ends of the rod will
then lie parallel to thect axis. Now sup-
pose that the position of the ends of the
rod is measured at the same time inS′,
at the timet′ = 0 in fact. These will
be the pointsO andP′ as indicated on
Fig. 5.6. It can be seen thatOP′ is

O P

P′ Q′

x

x′

ct

Figure 5.6:A rod of lengthOP = 1 m is stationary inS. Its

length inS′ is given byOP′ which is less thanOQ′, which has

a length of 1 m inS′.

shorter thanOQ′, the latter being a distance of 1 m inS′. We will not be considering this aspect
of spacetime diagrams any further here. However, what we will briefly look at is some of the
properties of the spacetime interval∆s that leads to this strange behaviour.

5.4 Properties of Spacetime Intervals

We saw in the preceding section that one of the invariant quantities is the interval Ds as it is just
the ”length” of the four-vector. As we saw earlier, it is the analogue in spacetime of the famil-
iar distance between two points in ordinary 3-dimensional space. However, unlike the ordinary
distance between two points, or more precisely (distance)2, which is always positive (or zero),
the interval between two eventsE1 andE2 i.e.∆s2, can be positive, zero, or negative. The three
different possibilities have their own names:

1. ∆s2 < 0: E1 andE2 are separated by aspace-likeinterval.

2. ∆s2 = 0: E1 andE2 are separated by alight-like interval.

3. ∆s2 > 0: E1 andE2 are separated by atime-likeinterval.

What these different possibilities represent is best illustrated on a spacetime diagram. Suppose
an eventO occurs at the spacetime point (0,0) in some frame of referenceS. We can divide the
spacetime diagram into two regions as illustrated in the figure below: the shaded region lying
between the world lines of photons passing through (0,0), and the unshaded region lying outside
these world lines. Note that if we added a further space axis, in theY direction say, the world lines
of the photons passing through will lie on a cone with its vertex atO. This cone is known as the
‘light cone’. Then events such asQ will lie ‘inside the light cone’, events such asP ‘outside the
light cone’, and events such asR ‘on the light cone’.
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O x

ct

Q

R

P

World lines of photons passing throughO

Figure 5.7: The pointQ within the light cone (the shaded region) is separated fromO by a time-like
interval. A signal travelling at a speed less thanc can reachQ from O. The pointR on the edge of the light
cone is separated fromO by a light-like interval, and a signal moving at the speedc can reachR from O.
The pointP is outside the light cone. No signal can reachP from O.

Consider now the sign of∆s2 between eventsO andP. Obviously

∆s2 = (c∆t)2 − (∆x)2 < 0 (5.30)

i.e. all points outside the light cone throughO are separated fromO by a space-like interval.
Meanwhile, for the eventQ we have

∆s2 = (c∆t)2 − (∆x)2 > 0 (5.31)

i.e. all points inside the light cone throughO are separated fromO by a time-like interval. Finally
for Rwe have

∆s2 = (c∆t)2 − (∆x)2 = 0 (5.32)

i.e. all points on the light cone throughO are separated fromO by a light-like interval.

The physical meaning of these three possibilities can be seen if we consider whether or not the
eventO can in some way affect the eventsP, Q, or R. In order for one event to physically affect
another some sort of signal must make its way from one event to the other. This signal can be
of any kind: a flash of light created atO, a massive particle emitted atO, a piece of paper with
a message on it and placed in a bottle. Whatever it is, in order to be present at the other event
and hence to either affect it (or even to cause it) this signal must travel the distance∆x in time∆t,
i.e. with speed∆x/∆t.

We can now look at what this will mean for each of the eventsP, Q, R. Firstly, for eventP we find
from Eq. (5.30) that∆x/∆t > c. Thus the signal must travel faster than the speed of light, which
is not possible. Consequently eventO cannot affect, or cause eventP. Secondly, for eventQ we
find from Eq. (5.31) that∆x/∆t < c so the signal will travel at a speed less than the speed of light,
so eventO can affect (or cause) eventQ. Finally, for R we find from Eq. (5.32) that∆x/∆t = c so
thatO can effectRby means of a signal travelling at the speed of light. In summary we can write

1. Two events separated by a space-like interval cannot affect one another;
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2. Two events separated by a time-like or light-like interval can affect one another.

Thus, returning to our spacetime diagram, we have:

past light cone

future light cone

these events can be affected byO

these events can affectO

events here are not af-
fected by, or cannot
affect the eventO

O

Figure 5.8:Future and past light cones of the eventO

All the events that can be influenced byO constitute the future of eventO while all events that can
influenceO constitute the past of eventO.

5.5 Four-Vector Notation

It is at this point that a diversion into further mathematical development of the subject is necessary.
For the present, we will be more concerned with theway that the physics is described mathemati-
cally, rather than the content of the physics itself. This is necessary to put in place the notation and
mathematical machinery that is used in general relativity (and in further developments in special
relativity, for that matter.) The first step in this direction is to introduce a more uniform way of
naming the components of the four-vector quantities introduced above which better empahsizes
its vector nature, that is:

x0 = ct, x1 = x, x2 = y, x3 = z (5.33)

where the superscript numbers are NOT powers ofx. In the same way, the components of the
momentum four-vector will be

p0 = E/c, p1 = px, p2 = py, p3 = pz (5.34)

and similarly for other four-vectors.

In terms of these names for the components we can write the Lorentz transformation equations as

(
∆xµ

)′
=

3∑
ν=0

Λ
µ
ν∆xν (5.35)
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where, ifS′ is moving with velocityvx relative toS, then theΛµν will be the components of the
4× 4 matrix appearing in Eq. (5.10) and Eq. (5.16), that is1

Λ
µ
ν =



Λ0
0 Λ0

1 Λ0
2 Λ0

3

Λ1
0 Λ1

1 Λ1
2 Λ1

3

Λ2
0 Λ2

1 Λ2
2 Λ2

3

Λ3
0 Λ3

1 Λ3
2 Λ3

3


=



γ −γvx/c 0 0

−γvx/c γ 0 0

0 0 1 0

0 0 0 1


. (5.36)

It is at this point that we make the first of two notational changes. First we note that we have
usually represented quantities as observed inS′ by attaching a prime to the symbol, e.g.x′, t′ and
so on. Now, we will attach the prime to the index, so that we will henceforth write:

∆xµ
′

=

3∑
ν=0

Λ
µ′

ν ∆xν (5.37)

where nowµ′ = 0′,1′,2′ or 3′, so that the transformation matrix is now

Λ
µ′

ν =



Λ0′
0 Λ0′

1 Λ0′
2 Λ0′

3

Λ1′
0 Λ1′

1 Λ1′
2 Λ1′

3

Λ2′
0 Λ2′

1 Λ2′
2 Λ2′

3

Λ3′
0 Λ3′

1 Λ3′
2 Λ3′

3


=



γ −γvx/c 0 0

−γvx/c γ 0 0

0 0 1 0

0 0 0 1


. (5.38)

It is important to recognize that this matrix, as used in Eq. (5.37), transforms the components of
4-vectors inS to the components inS′. If we were to carry out a transformation fromS′ to S, we
would have to write

∆xµ =
3′∑

ν′=0′
Λ
µ
ν′∆xν

′

(5.39)

with now

Λ
µ
ν′ =



Λ0
0′ Λ

0
1′ Λ

0
2′ Λ

0
3′

Λ1
0′ Λ

1
1′ Λ

1
2′ Λ

1
3′

Λ2
0′ Λ

2
1′ Λ

2
2′ Λ

2
3′

Λ3
0′ Λ

3
1′ Λ

3
2′ Λ

3
3′


=



γ γvx/c 0 0

γvx/c γ 0 0

0 0 1 0

0 0 0 1


(5.40)

where we note thatvx → −vx as we are transforming ‘the other way’, that is, fromS′ to S. It is
reasonable to expect that the two matrices for the Lorentz transformations fromS to S′ and vice
versa would be inverses of each other. That this is indeed the case can be readily confirmed by
multiplying the two matrices together. This point is discussed further in the following Section.

The second change in notation is very important as it offers considerable simplification of what
would otherwise be exceedingly complicated expressions. This new notation goes under the name
of the Einstein summation convention.

5.5.1 The Einstein Summation Convention

This convention, which Einstein looked on as his greatest invention, means replacing sums like

∆xµ
′

=

3∑
ν=0

Λ
µ′

ν ∆xν

1Note the unusual notation in which the symbol for anelementof a matrix is used as the symbol for thecomplete
matrix. This is done as a shorthand convenience, and though mathematically inelegant, it does have its uses.
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by
∆xµ

′

= Λ
µ′

ν ∆xν (5.41)

with the understanding that whenever there is any repeated (greek) index appearing in a ‘one up’,
‘one down’ combination the summation over the four values of the repeated index is understood.
Thus here, as the indexν appears ‘down’ inΛµ

′

ν and ‘up’ in∆xν, a summation over this index is
understood.

There are a number of important features associated with the convention.

Dummy indices: A repeated index is known as a dummy index, by which is meant that any
(greek) symbol can be used instead without a change in meaning, i.e.

∆xµ
′

= Λ
µ′

α ∆xα = Λµ
′

β ∆xβ = . . . . (5.42)

This changing around of dummy indices can be a useful trick in simplifying expressions,
particularly when a substitution has to be made, as will be illustrated later.

No summation implied: If an index is repeated, but both occur in an up position or in a down
position, then no summation is implied, i.e.

Γµµ , Γ00+ Γ11+ Γ22+ Γ33.

No meaning assigned:If an index is repeated more than twice, then no meaning is assigned to
such a combination, i.e.Γµµµ does not have an unambiguous meaning. If such a combination
should occur, then there is a good chance that an error has been made!

Free index: Any index that is not repeated in a one up one down arrangement is known as a free
index – we are free to give it any of its four possible values. In an equation, all free indices
must appear on both sides of the equation in the same i.e. up or down, position. Thus

aµ = Λ
µ
ν′a

ν′

is NOT correct, asµ appears in different positions on either side of the equation. The
following example is also not correct

G = gαβu
β.

as the free indexα appears only on the right hand side of the equation.

The name of a free index can be changed, of course, provided it is changed on both sides
of an equation. Changing the name of a free index is also a useful trick when manipulating
expressions, particularly when one expression is to be substituted into another.

Multiple repeated indices: If more than one pair of repeated indices occurs, then a summation
is implied overall the repeated indices i.e.

gµνa
µbν = g0νa

0bν + g1νa
1bν + g2νa

2bν + g3νa
3bν

= g00a
0b0 + g01a

0b1 + g02a
0b2 + g03a

0b3

+ g10a
1b0 + g11a

1b1 + g12a
1b2 + g13a

1b3

+ g20a
2b0 + g21a

2b1 + g22a
2b2 + g23a

2b3

+ g30a
3b0 + g31a

3b1 + g32a
3b2 + g33a

3b3.
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To see the convention in action, we will use it to show that the transformations associated with the
matricesΛµ

′

ν andΛνβ′ are inverses of each other. We begin with the equation

∆xµ
′

= Λ
µ′

ν ∆xν. (5.43)

which represents a transformation fromS to S′, and the inverse of this equation

∆xν = Λνβ′∆xβ
′

(5.44)

which represents a transformation fromS′ to S. We can substitute this into Eq. (5.43) to give

∆xµ
′

= Λ
µ′

ν Λ
ν
β′∆xβ

′

. (5.45)

Now define a new quantity
δ
µ′

β′ = Λ
µ′

ν Λ
ν
β′ (5.46)

which we can identify as the (µ′, β′) element of the product of the matricesΛµ
′

ν andΛνβ′ . In fact,

we see thatΛµ
′

ν is the inverse ofΛµβ′ , i.e.
γ −γvx/c 0 0

−γvx/c γ 0 0
0 0 1 0
0 0 0 1




γ γvx/c 0 0
γvx/c γ 0 0

0 0 1 0
0 0 0 1

 =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (5.47)

so thatδµ
′

β′ are just the components of the identity matrix, i.e.

δ
µ′

β′ =1 µ′ = β′

=0 µ′ , β′ (5.48)

The quantity defined by Eq. (5.48) is known as the Kronecker delta. It has the unique property of
having the same values in any reference frame, i.e. inS we have

δ
µ
β =1 µ = β

=0 µ , β

as can be confirmed by evaluatingδµβ = λ
µ
µ′Λ

β′

β δ
µ′

β′ .

5.5.2 Basis Vectors and Contravariant Components

The four components of the spacetime displacement four-vector∆~s can be used to construct the
four-vector itself by introducing a set of basis vectors. Thus we will write our displacement vector
∆~s as

∆~s= ∆xµ~eµ. (5.49)

It is tempting to think of~ei , i = 1,2,3 as being, in effect, the usual unit vectors in 3-space, that is
î, ĵ, andk̂ respectively, but this is not tenable when we consider how these basis vectors transform
between different reference frames. What is found is that even if a reference frameS′ is moving in
the x direction relative toS, in which case it might be expected that~e1′ would still ‘point’ in the î
direction, it is found that~e1′ , ~e1 as it acquires components in the ‘time’ direction. Thus we must
consider these basis vectors as being abstract vectors in spacetime that may happen to coincide
with the familiar unit vectors under some circumstances.
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Any four-vector such as the velocity, momentum or Minkowski force four-vectors can be ex-
pressed in terms of these basis vectors in the same way, e.g.

~p = pµ~eµ (5.50)

but we will develop the ideas here in terms of the spacetime displacement four-vector∆~s.

We have said repeatedly that∆~s is a geometrical object that exists in spacetime independent of
any choice of reference frame with which to assign its components, so we can equally well write
the above expression for∆~s as

∆~s= ∆xµ
′

~eµ′ (5.51)

where~eµ′ are the new basis vectors inS′. If we now use the Lorentz transformation to write

∆xµ
′

= Λ
µ′

ν ∆xν (5.52)

we then get
∆~s= Λµ

′

ν ∆xν~eµ′ = ∆xνΛµ
′

ν ~eµ′ = ∆xν~eν (5.53)

where now
~eν = Λ

µ′

ν ~eµ′ . (5.54)

Equivalently, we have
~eν′ = Λ

µ
ν′~eµ (5.55)

so that, for instance
~e1′ = Λ

µ
1′~eµ = γ

vx

c
~e0 + γ~e1 (5.56)

which shows, as was intimated above, that~e1′ is a linear combination of~e1 and~e0 – i.e. it does not
‘point’ in the same direction as~e1, even thoughS andS′ are moving in thex direction relative to
one another.

If we now compare the two results
~eµ = Λ

ν′

µ ~eν′

and
∆xµ = Λµν′∆xν

′

(5.57)

we see that the first involves the transformation matrix elementsΛν
′

µ , the second involves the
elementsΛµν′ of the inverse matrix (see Eq. (5.47)). Thus the basis vectors and the components
transform in ‘opposite ways’ – they do so in order to guarantee that the interval is the same in all
reference frames. Because of this contrary way of transforming, the components∆xµ are referred
to as thecontravariantcomponents of∆~s.

In a corresponding way, the components of other four-vectors, such as the componentspµ of the
momentum four-vector~p = pµ~eµ will be understood as being contravariant components.

5.5.3 The Metric Tensor

Having defined the spacetime displacement four-vector∆~s, we can proceed to define its length in
the usual way. But first, we make yet another minor change in notation, namely that we now write
∆s2 rather than (∆s)2. Thus, we have

∆s2 =∆~s · ∆~s

=
(
∆x0~e0 + ∆x1~e1 + ∆x2~e2 + ∆x3~e3

)
·
(
∆x0~e0 + ∆x1~e1 + ∆x2~e2 + ∆x3~e3

)
=

(
∆x0

)2
−

(
∆x1

)2
−

(
∆x2

)2
−

(
∆x3

)2
. (5.58)
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Hence we must conclude that

~eµ · ~eν = 0 µ , ν

~e0 · ~e0 = 1

~ei · ~ei = −1 i = 1,2,3

 (5.59)

so they are most unusual basis vectors indeed!

At this point we introduce a new quantity

gµν = ~eµ · ~eν (5.60)

which, written as a matrix, looks like

gµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 . (5.61)

In terms of this quantity, the interval∆s can be written

∆s2 = gµν∆xµ∆ν. (5.62)

The quantitygµν plays a central role in defining the geometrical properties of spacetime in that in
curved spacetime the components ofgµν are not simple constants but rather are functions of the
spacetime coordinatesxµ. A more precise statement is that in the presence of curvature, no matter
what frame of reference we use to describe the events in spacetime, there are none for which all
thegµν are constants given by Eq. (5.61) throughout all spacetime. In the particular case in which
thegµν have the constant values given in Eq. (5.61), then spacetime is said to beflat. In that case,
a different notation is occasionally used, that isgµν is writtenηµν. As it plays a role in determining
the interval or ‘distance’ between two events in spacetime,gµν is referred to as themetric tensor.
Why it is called a tensor is something to be examined later.

There are two properties ofgµν that are worth keeping in mind. First, it is symmetric in the indices,
i.e.

gµν = gνµ (5.63)

and secondly, it has the same components in all reference frames, i.e.

gµ′ν′ = Λ
α
µ′Λ

β
ν′gαβ (5.64)

a result that can be confirmed by direct calculation.

5.5.4 Covectors and Covariant Components

The metric tensor plays another useful role in that we can define a new set of quantities

∆xµ = gµν∆xν, (5.65)

a procedure known as ‘lowering an index’. Using the values ofgµν (or ηµν) given in Eq. (5.59) we
can easily evaluate these quantities:

∆x0 =∆x0

∆xi = − ∆xi , i = 1,2,3.

 (5.66)
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In terms of the∆xµ, the interval becomes

∆s2 = gµν∆xµ∆xν = ∆xµ∆xµ. (5.67)

If we write this out in matrix form we get

∆s2 =
(
∆x0 ∆x1 ∆x2 ∆x3

) 
∆x0

∆x1

∆x2

∆x3

 . (5.68)

The column vector here represents the four-vector∆~s, but what does the row vector represent? The
fact that it is written out as a row vector, and its components are different from those that appear in
the column vector, suggests that it represents a different mathematical object as compared to the
four-vector∆~s, and so we (temporarily) give it a new name,∆s̃:

∆s̃�
(
∆x0 ∆x1 ∆x2 ∆x3

)
. (5.69)

The newly defined mathematical object is known as a one-form or a covector with components
∆xµ. We can define a set of basis covectors, ˜eµ so that we have

∆s̃= ∆xµẽ
µ (5.70)

but as we will soon see, we will not need to develop this idea any further.

The components∆xµ will, of course, be different in different reference frames. We can derive the
transformation law by, once again, making use of the fact that∆s2 is the same in all reference
frames to write

∆s2 = ∆xµ′∆xµ
′

. (5.71)

Using∆xµ
′

= Λ
µ′

ν ∆xν, this becomes

∆s2 = Λ
µ′

ν ∆xµ′∆xν = ∆xν∆xν (5.72)

where
∆xν = Λ

µ′

ν ∆xµ′ . (5.73)

If we compare this with Eq. (5.54), that is~eν = Λ
µ′

ν ~eµ′ we see that∆xν and~eν transform in exactly
the same way. Consequently, the∆xν are referred to as thecovariantcomponents of∆s̃.

We have arrived at a state of affairs analogous to what we have in quantum mechanics, namely that

∆~s→ |ψ〉 and ∆s̃→ 〈ψ|

though here, no complex conjugation is required as the components of∆~s are all real. Further,
just as in quantum mechanics we can equally well describe the state of a physical system in terms
of a bra or ket vector, we have here a perfect one-to-one correspondence between∆~s and∆s̃. In
fact, in general, no distinction need be drawn between them as they equally well represent the
same geometrical object in spacetime, so in future we will have no need to talk about the covector
∆s̃, and instead will simply refer to the four-vector∆~s which has covariant components∆xµ or
contravariant components∆xµ.

Any four-vector, such as the velocity, acceleration, and Minkowski force four-vectors can be ex-
pressed in terms of its covariant components in the same way as the spacetime displacement vector,
with the components transforming in exactly the same fashion as in Eq. (5.73). In all cases, the
covariant components of these four-vectors will be related to their contravariant counterparts in
the same way as for the components of∆~s, e.g. for the momentum four-vector:

p0 =p0

pi = − pi , i = 1,2,3.

 (5.74)
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5.5.5 Transformation of Differential Operators

To see an important example of a situation in which the covariant components of a four-vector
naturally arise, consider the derivatives

∂φ

∂xµ

whereφ is some function that has the same value in all reference frames (a scalar function). To
transform these derivatives to their values in another reference frame, we need to use the chain
rule for partial derivatives, i.e.

∂φ

∂x0′
=
∂φ

∂x0

∂x0

∂x0′
+
∂φ

∂x1

∂x1

∂x0′
+
∂φ

∂x2

∂x2

∂x0′
+
∂φ

∂x3

∂x3

∂x0′
. (5.75)

Using the Lorentz transformation
xµ = Λµν′x

ν′ (5.76)

we see that
∂x0

∂x0′
= Λ0

0′ . (5.77)

If we carry out the same calculation for all the partial derivatives, we find that

∂xµ

∂xν′
= Λ

µ
ν′ (5.78)

so that
∂φ

∂xν′
= Λ

µ
ν′
∂φ

∂xµ
. (5.79)

If we introduce a new notation and write

∂φ

∂xν
= ∂νφ (5.80)

then Eq. (5.79) becomes
∂ν′φ = Λ

µ
ν′∂µφ (5.81)

which is just the transformation rule for covariant components, Eq. (5.73) of a four-vector. In
fact, it is usual practice to treat the differential operators∂µ themselves as being the covariant
components of a four-vector, and write

∂ν′ = Λ
µ
ν′∂µ. (5.82)

5.6 Tensors

The last formal mathematical tool that we need to introduce is the concept of a tensor. A tensor
is a generalization of the idea of a four-vector, and as such a tensor represents geometrical object
existing in spacetime, but one that is even more difficult to visualize than a four-vector.

One viewpoint with regard to tensors is that they can be considered as being ‘operators’ that act
upon four-vectors to produce real numbers, and that is the way that the concept will be introduced
here. The connection between tensors defined in this manner, and concepts already introduced
will emerge later, as will the physical applications of the idea.

Thus, we begin with a definition.

A tensorT(~a, ~b, ~c, . . .) is a linear function of the four-vectors~a, ~b, ~c, . . . that maps these
four-vectors into the real numbers.
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Different rules for how the real number is calculated from the vector arguments then gives rise
to different tensors. The manner of definition, namely that no mention is made of any reference
frame, means that a tensor is a quantity that is independent of the choice of reference frame.

The following properties and definitions are important:

Rank The rank of a tensor is the number of vector arguments. Thus a tensor of rank 1 will be
the function of one vector only, i.e.p(~a) will define a tensor of rank one,g(~a, ~b), a tensor of rank
2 and so on.

Linearity That the functionT(~a, ~b, ~c, . . .) is linear means that for any numbersu andv

T(u~a+ v~b, ~c, . . .) = uT(~a, ~c, . . .) + vT(~b, ~c, . . .) (5.83)

with same being true for all the arguments, i.e.

T(~a,u~b+ v~c, . . .) = uT(~a, ~b, . . .) + vT(~a, ~c, . . .). (5.84)

Tensor Components The components of a tensor are the values of the tensor obtained when
evaluated for the vectors~a, ~b, ~c, . . . equal to the basis vectors. Thus, we have

Tµνα... = T(~eµ, ~eν, ~eα, . . .). (5.85)

As a consequence of this and the linearity ofT, we have

T(~a, ~b, ~c, . . .) = T(~eµ, ~eν, ~eα, . . .)a
µbνcα . . . = Tµνα...a

µbνcα . . . . (5.86)

Raising and Lowering Indices The process of raising and lowering indices can be carried
through with the components of a tensor in the expected way. Thus, we can write

Tµ
να... = gβµTβνα... (5.87)

or
Tµ

ν
α . . . = gβνTµβα.... (5.88)

Corresponding to this we would have, for instance

T(~a, ~b, ~c, . . .) = Tµνα...a
µbνcα . . . = Tµνα...g

βµaβb
νcα . . . . (5.89)

Where the implied sum overβ means that we are applying the raising procedure toaβ. But, if we
reqroup the terms, we have

T(~a, ~b, ~c, . . .) = gβµTµνα...aβb
νcα . . . (5.90)

where we now see that the implied sum overµ means that we are raising an index in the compo-
nents of the tensor, i.e.

T(~a, ~b, ~c, . . .) = Tβ
να...aβb

νcα . . . (5.91)

This flexibility in moving indices up and down by the application ofgµν or gµν means that we can
express the components of any tensor in a number of ways that differ by the position of the indices.
The different ways in which this is done is described by different terminology, i.e.

Tµνα... covariant components ofT

Tµ
ν
α... or Tµν

α...

and other combinations of
up and down indices mixed components ofT

Tµνα... contravariant components ofT.
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Being able to raise and lower indices of a tensor raises the possibility of introducing a further
mathematical manipulation of tensors. We will illustrate it in the case of a tensor of rank 2,T(~a, ~b)
with covariant componentsTµν and mixed componentsTµβ where

Tµ
β = gβνTµν. (5.92)

If we setµ = β in the tensor componentTµβ, we obtainTµµ which, according to the summation
convention implies a sum must be taken over the repeated indexµ i.e.

Tµ
µ = T0

0 + T1
1 + T2

2 + T3
3. (5.93)

This procedure is known as acontractionof the tensor. The effect of contraction of a tensor is to
lower the rank of the tensor by 2, as seen here where the result is a number (a scalar), a tensor of
rank 0.

5.6.1 Some Examples

At this point it is useful to introduce an example, a second rank tensorg(~a, ~b) defined by

g(~a, ~b) = ~a · ~b. (5.94)

It is clearly the case that
g(~eµ, ~eν) = ~eµ · ~eν = gµν (5.95)

which is just the elements of the metric tensor, introduced in Section 5.5.3. For an arbitrary pair
of vectors~a and~b, this becomes

g(~a, ~b) = gµνa
µbν (5.96)

so that, in particular
g(∆~s,∆~s) = gµν∆xµ∆xν = ∆s2 (5.97)

which is just the expression for the interval.

A closely related example is that of a rank 1 tensor, i.e.a(~b):

a(~b) = a(bν~eν) = a(~eν)b
ν = aνb

ν = gµνa
µbν = ~a · ~b (5.98)

where we have identified the componentsa(~eν) = aµ of the tensor as the covariant components of
a vector~a. In other words, a tensor or rank 1 is identical to a four-vector.

Tensors of rank zero have no components: they are known as scalars in the same way as quantities
without vector components in ordinary three space are referred to as scalars.

5.6.2 Transformation Properties of Tensors

The last property of tensors that we need to consider is the manner in which they transform be-
tween different reference frames. This can be derived in a direct fashion that makes use of the fact
that the tensors were defined in a way that is independent of the choice of reference frame, and
hence tensors are geometrical objects (in the same way as four-vectors are) that have an existence
in spacetime independent of any choice of reference frame. With that in mind, we can immediately
write for the covariant components of a tensorT

T(~a, ~b, ~c, . . .) = Tµνα...a
µbνcα . . . = Tµ′ν′α′...a

µ′bν
′

cα
′

. . . . (5.99)
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By usingaµ
′

= Λ
µ′

ν aν and similarly for the other vector components, this becomes

Tµνα...a
µbνcα . . . = Tµ′ν′α′...Λ

µ′

µ Λ
ν′

ν Λ
α′

α . . . a
µbνcα . . . (5.100)

As the vectors~a, ~b, ~c . . . are arbitrary, we have

Tµνα... = Λ
µ′

µ Λ
ν′

ν Λ
α′

α . . .Tµ′ν′α′... (5.101)

In other words, the transformation is carried out in the same fashion as we have seen for the single
index case (i.e. for the components of vectors). In a similar way (by use ofgµν to raise indices),
we can show for the contravariant components that

Tµνα... = Λ
µ
µ′Λ

ν
ν′Λ

α
α′ . . .T

µ′ν′α′... (5.102)

The results Eq. (5.101) and Eq. (5.102), and a corresponding result for mixed components of the
tensorT can be used as a test to see whether or not a multi-indexed quantity is, in fact, a tensor.
We shall see how this can be implemented in the case of the Faraday tensor used to describe the
electromagnetic field.



Chapter 6

Electrodynamics in Special Relativity

O of the driving forces behind Einstein’s formulation of the principles of special relativity
was the deep significance he attached to the laws of electromagnetism. It is therefore not

too surprising to find that these laws can be expressed in the language of four-vectors and tensors
in a way that explicitly shows that electromagnetism is consistent with the principles of special
relativity. The central feature of this relativistic formulation of Maxwell’s theory is the Faraday
tensor.

6.1 The Faraday Tensor

By judicious arguments based on applying length contraction and time dilation arguments to the
various basic laws of electromagnetism: Ampere’s law for the magnetic field produced by currents,
Faraday’s law of magnetic induction for the electric fields produced by a time varying magentic
field, and Gauss’s law for the electric field produced by static electric charges – all of which are
expressed in terms of either line or surface integrals, or else by working directly from Maxwell’s
equations (which are simply restatements of the integral laws in differential form), it is possible
to show that electric and magnetic fieldsE(x, y, z, t) and B(x, y, z, t) as measured in a frame of
referenceS are related to the electric and magnetic fieldsE′(x′, y′, z′, t′) and B′(x′, y′, z′, t′) as
measured in a reference frameS′ moving with a velocityvx with respect toS is given by

E′x = Ex E′y = γ
(
Ey − vxBz

)
E′z = γ

(
Ez+ vxBy

)
B′x = Bx B′y = γ

(
By +

vx

c2
Ez

)
B′z = γ

(
Bz−

vx

c2
Ey

)
 (6.1)

with, in addition, the usual Lorentz transformation equations for the space time coordinates.

The question then arises as to how the electromagnetic field fits in with the general mathematical
formalism presented above. It is first of all clear that the transformation laws given in Eq. (6.1) are
not those of a four-vector. For one thing, a four-vector has four components – the electromagnetic
field has six, while a second rank tensor has two indices and hence has 4× 4 = 16 components.
However, these components need not all be independent. In fact, we can distinguish two important
special cases in which the tensor is either symmetric or antisymmetric in its components. In
discussing this point, we will work with the contravariant components of a rank 2 tensor as this
turns out to be most convenient when dealing with Maxwell’s equations in four-vector notation.
Thus, we have the two possibilities

Tµν = Tνµ symmetric

Tµν = −Tνµ antisymmetric

 (6.2)
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In the symmetric case, we only need to know 10 components, that isTµµ, µ = 0,1,2,3 and
T01,T02,T03,T12,T13 and T23. An important example of a symmetric tensor is the energy-
momentum tensor. In the antisymmetric case, we have that

Tµµ = −Tµµ (6.3)

so thatTµµ = 0. What is left are the componentsT01,T02,T03,T12,T13 andT23 which automati-
cally give their transposed companions by a change of sign. Written as a matrix, we have

Tµν =



0 T01 T02 T03

−T01 0 T12 T13

−T02 −T12 0 T23

−T03 −T13 −T23 0


. (6.4)

Thus only six independent quantities are needed to fully specify the components of an anti-
symmetric tensor, exactly the same as the number of components of the electromagnetic field.
The prospect therefore exists that the electromagnetic field components together constitute the
components of a second rank antisymmetric tensor. To test whether or not this is the case, we
need to show that an antisymmetric tensor transforms in the same way as the electromagnetic
components as given in Eq. (6.1).

The transformation equations forTµν are given by

Tµ′ν′ = Λ
µ′

µ Λ
ν′

ν′T
µν. (6.5)

Expanding the various components we have

T0′1′ = Λ0′
µ Λ

1′
ν Tµν = Λ0′

0 Λ
1′
ν T0ν + Λ0′

1 Λ
1′
ν T1ν = Λ0′

0 Λ
1′
1 T01+ Λ1′

0 Λ
0′
1 T10 (6.6)

where all the other terms vanish either because the diagonal elementsTµµ are all zero, or because
the elements of the Lorentz transformation matrix are zero. Further, sinceT01 = −T10, we get

T0′1′ =
(
Λ0′

0 Λ
1′
1 − Λ

1′
0 Λ

0′
1

)
T01 =

(
γ2 − γ2v2

x

c2

)
= T01. (6.7)

In the same way we find that

T0′2′ = Λ0′
µ Λ

2′
ν Tµν = Λ0′

0 Λ
2′
ν T0ν + Λ1′

0 Λ
2′
ν T1ν = Λ0′

0 Λ
2′
2 T02+ Λ1′

0 Λ
2′
2 T12 (6.8)

Substituting for the elements of the Lorentz transformation matrix then gives

T0′2′ = γ
(
T02−

vx

c
T12

)
. (6.9)

Proceeding in this way, we end up with the set of transformation equations:

T0′1′ = T01 T0′2′ = γ
(
T02−

vx

c
T12

)
T0′3′ = γ

(
T03+

vx

c
T31

)
T2′3′ = T23 T3′1′ = γ

(
T31+

vx

c
T03

)
T1′2′ = γ

(
T12−

vx

c
T02

)
 (6.10)

which can be compared with Eq. (6.1) written as follows:

E′x
c
=

Ex

c

E′y
c
= γ

(
Ey

c
− vxBz

)
E′z
c
= γ

(Ez

c
+ vxBy

)
B′x = Bx B′y = γ

(
By +

vx

c
Ez

c

)
B′z = γ

(
Bz−

vx

c

Ey

c

)
.

 (6.11)
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Thus we can make the identifications:

T01 =
Ex

c
T02 =

Ey

c
T03 =

Ez

c
T23 = Bx T31 = By T12 = Bz.

 (6.12)

Usually the symbolFµν is used for the components of the electromagnetic field tensor, also known
as the Faraday tensor, so we can write:

Fµν =



0 Ex
c

Ey

c
Ez
c

−
Ex
c 0 Bz −By

−
Ey

c −Bz 0 Bx

−
Ex
c By −Bz 0


(6.13)

The identification made in Eq. (6.12) is not unique since we can also make the identification:

T01 = Bx T02 = By T03 = Bz

T23 = −
Ex

c
T31 = −

Ey

c
T12 = −

Ez

c

 . (6.14)

which leads to the tensor

Gµν =



0 Bx By Bz

−Bx 0 −
Ez
c

Ey

c

−By
Ez
c 0 −

Ex
c

−Bz −
Ey

c
Ex
c 0


(6.15)

known as the dual tensor.

Thus we have seen that the electromagnetic field can be represented in special relativity by two
second rank antisymmetric tensors, the Faraday tensorF with contravariant components given by
Eq. (6.13), and its dualG with contravariant components given by Eq. (6.15).

6.2 Dynamics of the Electromagnetic Field

Using the results obtained above, we can show how to rewrite Maxwell’s equations in the language
of four-vectors. In order to do this, we first of assume that charge is a relativistic scalar, i.e. it is the
same in all reference frames. We then introduce a new four-vector, the current density four-vector
~J with contravariant components given by

Jµ = ρ0uµ. (6.16)

Here theuµ are the contravariant components of the velocity four-vector for which

u0 =
c√

1− u2/c2

u1 =
ux√

1− u2/c2

u2 =
uy√

1− u2/c2

u3 =
uz√

1− u2/c2


(6.17)
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The current density is evaluated at the point (x, y, z, t) as measured inS, and is determined both
by the velocity with which the charges are moving and by the density of charge at this point at
this time. However, the charge densityρ0 is the proper charge density, that is, it is the charge per
unit volume as measured in the neighbourhood of the event (x, y, z, t) as measured with respect to
a frame of reference that in which the charges at that point are at rest. Thus, in particular, we have

J0 = ρ0u0 =
ρ0√

1− u2/c2
c = ρc (6.18)

whereρ given by

ρ =
ρ0√

1− u2/c2
(6.19)

is the charge density in the frame of referenceS in which the length of the volume occupied by
the charge has been contracted in the direction of motion of the charge as measured inS. To see
what this means, we can suppose that we are considering a small volume∆V0 which is stationary
with respect to the charges within this volume. But these charges are moving with a velocityu
as measured from a frame of referenceS. Thus, if we let∆V0 = ∆x0∆y0∆z0, and the charges are
moving in thex direction inS, i.e.uy = uz = 0, then according to the reference frameS, the x
dimension of this volume is contracted to a length

∆x =
√

1− u2/c2∆x0 (6.20)

while the lengths in the other direction are unaffected. Thus, the volume occupied by the charges
as measured inS is

∆V = ∆x∆y∆z=
√

1− u2/c2∆x0∆y0∆z0 (6.21)

so that

∆V0 =
∆V√

1− u2/c2
(6.22)

If we let the charge within this volume be∆Q, then the charge density will be, inS

ρ =
∆Q
∆V
=

1√
1− u2/c2

∆Q
∆V0

=
ρ0√

1− u2/c2
(6.23)

where we have explicitly used the fact that the charge is the same in both frames of reference,
i.e. that charge is a relativistic scalar.

One of the important properties of the current density four-vector follows if we calculate the ‘four-
divergence’ of~J:

~∂ · ~J = ∂µJµ =
∂J0

∂x0
+
∂J1

∂x1
+
∂J2

∂x2
+
∂J3

∂x3
(6.24)

=
∂cρ
∂ct
+
∂Jx

∂x
+
∂Jy

∂y
+
∂Jz

∂z
(6.25)

=∇ · J +
∂ρ

∂t
. (6.26)

The last expression expresses the conservation of charge: the term∇ · J is the rate at which charge
‘diverges’ from a point in space, while the time derivative is the rate of change of the charge
density at that point. Since charge is conserved, i.e. neither created or destoyed, the sum of these
two terms must be zero, i.e.

∂µJµ = ∇ · J +
∂ρ

∂t
= 0. (6.27)
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We can now show that Maxwell’s equations can now be written in the form

∂νF
µν =µ0Jµ (6.28)

∂νG
µν =0. (6.29)

whereµ0 is the magnetic permeability of free space. To demonstrate this, it is necessary to merely
expand the expressions for the four possible values of the free index in each case. For example,
we have, on settingµ = 0 in Eq. (6.28)

∂νF
0ν = µ0J0 = µ0ρc (6.30)

and, on expanding the left hand side:

∂0F00+ ∂1F01+ ∂2F02+ ∂3F03 = µ0ρc. (6.31)

Replacing the partial derivatives by the usual forms in terms ofx, y, andz, and noting thatF00 = 0
gives

1
c
∂Ex

∂x
+

1
c

∂Ey

∂y
+

1
c
∂Ez

∂z
= µ0ρc. (6.32)

Using the fact thatc2 = (µ0ε0)−1 and recognizing that the derivatives on the right hand side merely
define the divergence ofE, we get

∇ · E =
ρ

ε0
(6.33)

which is Gauss’s Law. In a similar way, the other Maxwell’s equations can be derived. This is left
as an exercise for the reader.


