
Chapter 14

Probability, Expectation Value and Uncertainty

We have seen that the physically observable properties of a quantum system are represented
by Hermitean operators (also referred to as ‘observables’) such that the eigenvalues of

the operator represents all the possible results that could be obtained if the associated physical
observable were to be measured. The eigenstates of the operator are the states of the system
for which the associated eigenvalue would be, with 100% certainty, the measured result, if the
observable were measured. If the system were in any other state then the possible outcomes of
the measurement cannot be predicted precisely – different possible results could be obtained, each
one being an eigenvalue of the associated observable, but only the probabilities can be determined
of these possible results. This physically observed state-of-affairs is reflected in the mathematical
structure of quantum mechanics in that the eigenstates of the observable form a complete set of
basis states for the state space of the system, and the components of the state of the system with
respect to this set of basis states gives the probability amplitudes, and by squaring, the probabilities
of the various outcomes being observed.

Given the probabilistic nature of the measurement outcomes, familiar tools used to analyze statis-
tical data such as the mean value and standard deviation play a natural role in characterizing the
results of such measurements. The expectation or mean value of an observable is a concept taken
more or less directly from the classical theory of probability and statistics. Roughly speaking, it
represents the (probability-weighted) average value of the results of many repetitions of the mea-
surement of an observable, with each measurement carried out on one of very many identically
prepared copies of the same system. The standard deviation of these results is then a measure of
the spread of the results around the mean value and is known, in a quantum mechanical context,
as the uncertainty.

14.1 Observables with Discrete Values

The probability interpretation of quantum mechanics plays a central, in fact a defining, role in
quantum mechanics, but the precise meaning of this probability interpretation has as yet not been
fully spelt out. However, for the purposes of defining the expectation value and the uncertainty it
is necessary to look a little more closely at how this probability is operationally defined. The way
this is done depends on whether the observable has a discrete or continuous set of eigenvalues, so
each case is discussed separately. We begin here with the discrete case.

14.1.1 Probability

If A is an observable for a system with a discrete set of values {a1, a2, . . .}, then this observable
is represented by a Hermitean operator Â that has these discrete values as its eigenvalues, and
associated eigenstates {|an〉, n = 1, 2, 3, . . .} satisfying the eigenvalue equation Â|an〉 = an|an〉.
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These eigenstates form a complete, orthonormal set so that any state |ψ〉 of the system can be
written

|ψ〉 =
∑

n
|an〉〈an|ψ〉

where, provided 〈ψ|ψ〉 = 1, then

|〈an|ψ〉|2 = probability of obtaining the result an on mea-
suring Â.

To see what this means in an operational sense, we can suppose that we prepare N identical copies
of the system all in exactly the same fashion so that each copy is presumably in the same state |ψ〉.
This set of identical copies is sometimes called an ensemble. If we then perform a measurement
of Â for each member of the ensemble, i.e. for each copy, we find that we get randomly varying
results e.g.

Copy: 1 2 3 4 5 6 7 8 . . . N
Result: a5 a3 a1 a9 a3 a8 a5 a9 . . . a7

Now count up the number of times we get the result a1 – call this N1, and similarly for the number
of times N2 we get the result a2 and so on. Then

Nn

N
= fraction of times the result an is obtained. (14.1)

What we are therefore saying is that if the experiment is performed on an increasingly large num-
ber of identical copies, i.e. as N → ∞, then we find that

lim
N→∞

Nn

N
= |〈an|ψ〉|2. (14.2)

This is the so-called ‘frequency’ interpretation of probability in quantum mechanics, i.e. the prob-
ability predicted by quantum mechanics gives us the frequency with which an outcome will occur
in the limit of a very large number of repetitions of an experiment.

There is another interpretation of this probability, more akin to ‘betting odds’ in the sense that
in application, it is usually the case that the experiment is a ‘one-off’ affair, i.e. it is not possible
to repeat the experiment many times over under identical conditions. It then makes more sense
to try to understand this probability as a measure of the likelihood of a particular result being
actually observed, in the same way that betting odds for a horse to win a race is a measure of the
confidence there is in the horse actually winning. After all, a race is only run once, so while it is
possible to imagine the race being run many times over under identical conditions, and that the
odds would provide a measure of how many of these imagined races a particular horse would win,
there appears to be some doubt of the practical value of this line of thinking. Nevertheless, the
‘probability as frequency’ interpretation of quantum probabilities is the interpretation that is still
most commonly to be found in quantum mechanics.

14.1.2 Expectation Value

We can now use this result to arrive at an expression for the average or mean value of all these
results. If the measurement is repeated N times, the average will be

N1

N
a1 +

N2

N
a2 + . . . =

∑

n

Nn

N
an. (14.3)
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Now take the limit of this result for N → ∞, and call the result 〈Â〉:

〈Â〉 = lim
N→∞

∑

n

Nn

N
an =

∑

n
|〈an|ψ〉|2an. (14.4)

It is a simple matter to use the properties of the eigenstates of Â to reduce this expression to a
compact form:

〈Â〉 =
∑

n
〈ψ|an〉〈an|ψ〉an

=
∑

n
〈ψ|Â|an〉〈an|ψ〉

= 〈ψ|Â
{∑

n
|an〉〈an|

}
|ψ〉

= 〈ψ|Â|ψ〉 (14.5)

where the completeness relation for the eigenstates of Â has been used.

This result can be readily generalized to calculate the expectation values of any function of the
observable Â. Thus, in general, we have that

〈 f (Â)〉 =
∑

n
|〈an|ψ〉|2 f (an) = 〈ψ| f (Â)|ψ〉 (14.6)

a result that will find immediate use below when the uncertainty of an observable will be consid-
ered.

While the expectation value has been defined in terms of the outcomes of measurements of an
observable, the same concept of an ‘expectation value’ is applied to non-Hermitean operators
which do not represent observable properties of a system. Thus if Â is not Hermitean and hence
not an observable we cannot make use of the idea of a collection of results of experiments over
which an average is taken to arrive at an expectation value. Nevertheless, we continue to make use
of the notion of the expectation value 〈Â〉 = 〈ψ|Â|ψ〉 even when Â is not an observable.

14.1.3 Uncertainty

The uncertainty of the observable A is a measure of the spread of results around the mean 〈Â〉. It
is defined in the usual way, that is the difference between each measured result and the mean is
calculated, i.e. an−〈Â〉, then the average taken of the square of all these differences. In the limit of
N → ∞ repetitions of the same experiment we arrive at an expression for the uncertainty (∆A)2:

(∆A)2 = lim
N→∞

∑

n

Nn

N
(an − 〈Â〉)2 =

∑

n
|〈an|ψ〉|2(an − 〈Â〉)2. (14.7)

As was the case for the expectation value, this can be written in a more compact form:

(∆A)2 =
∑

n
〈ψ|an〉〈an|ψ〉(an − 〈Â〉)2

=
∑

n
〈ψ|an〉〈an|ψ〉(a2

n − 2an〈Â〉 + 〈Â〉2)

=
∑

n
〈ψ|an〉〈an|ψ〉a2

n − 2〈Â〉
∑

n
〈ψ|an〉〈an|ψ〉an + 〈Â〉2

∑

n
〈ψ|an〉〈an|ψ〉
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Using f (Â)|an〉 = f (an)|an〉 then gives

(∆A)2 =
∑

n
〈ψ|Â2|an〉〈an|ψ〉 − 2〈Â〉

∑

n
〈ψ|Â|an〉〈an|ψ〉 + 〈Â〉2〈ψ|

{∑

n
|an〉〈an|

}
|ψ〉

= 〈ψ|Â2
{∑

n
|an〉〈an|

}
|ψ〉 − 2〈Â〉〈ψ|Â

{∑

n
|an〉〈an|

}
|ψ〉 + 〈Â〉2〈ψ|ψ〉

Assuming that the state |ψ〉 is normalized to unity, and making further use of the completeness
relation for the basis states |an〉 this becomes

(∆A)2 = 〈ψ|Â2|ψ〉 − 2〈Â〉2 + 〈Â〉2 = 〈Â2〉 − 〈Â〉2. (14.8)

We can get another useful expression for the uncertainty if we proceed in a slightly different
fashion:

(∆Â)2 =
∑

n
〈ψ|an〉〈an|ψ〉(an − 〈Â〉)2

=
∑

n
〈ψ|an〉(an − 〈Â〉)2〈an|ψ〉

Now using f (Â)|an〉 = f (an)|an〉 then gives

(∆Â)2 =
∑

n
〈ψ|(Â − 〈Â〉)2|an〉〈an|ψ〉

= 〈ψ|(Â − 〈Â〉)2
{∑

n
|an〉〈an|

}
|ψ〉

= 〈ψ|(Â − 〈Â〉)2|ψ〉
= 〈(Â − 〈Â〉)2〉. (14.9)

Thus we have, for the uncertainty ∆Â, the two results

(∆Â)2 = 〈(Â − 〈Â〉)2〉 = 〈Â2〉 − 〈Â〉2. (14.10)

Just as was the case for the expectation value, we can also make use of this expression to formally
calculate the uncertainty of some operator Â even if it is not an observable, though the fact that the
results cannot be interpreted as the standard deviation of a set of actually observed results means
that the physical interpretation of the uncertainty so obtained is not particularly clear.

Ex 14.1 For the O−2 ion (see p 98) calculate the expectation value and standard deviation of the
position of the electron if the ion is prepared in the state |ψ〉 = α| + a〉 + β| − a〉.
In this case, the position operator is given by

x̂ = a| + a〉〈+a| − a| − a〉〈−a|

so that
x̂|ψ〉 = aα| + a〉 − aβ| − a〉

and hence the expectation value of the position of the electron is

〈ψ|x̂|ψ〉 = 〈x̂〉 = a
(|α|2 − |β|2)
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which can be recognized as being just

〈x̂〉 = (+a) × probability |α|2 of measuring electron position to be +a

+ (−a) × probability |β|2 of measuring electron position to be −a.

In particular, if the probability of the electron being found on either oxygen atom is
equal, that is |α|2 = |β|2 = 1

2 , then the expectation value of the position of the electron is
〈x̂〉 = 0.
The uncertainty in the position of the electron is given by

(∆x̂)2 = 〈x̂2〉 − 〈x̂〉2.
We already have 〈x̂〉, and to calculate 〈x̂2〉 it is sufficient to make use of the expression
above for x̂|ψ〉 to give

x̂2|ψ〉 = x̂
[
aα| + a〉 − aβ| − a〉]

= a2[α| + a〉 + β| − a〉]

= a2|ψ〉
so that 〈ψ|x̂2|ψ〉 = 〈x̂2〉 = a2. Consequently, we find that

(∆x̂)2 = a2 − a2(|α|2 − |β|2)2

= a2
[
1 − (|α|2 − |β|2)2

]

= a2(1 − |α|2 + |β|2)(1 + |α|2 − |β|2)

Using 〈ψ|ψ〉 = |α|2 + |β|2 = 1 this becomes

(∆x̂)2 = 4a2|α|2|β|2

from which we find that
∆x̂ = 2a|αβ|.

This result is particularly illuminating in the case of |α|2 = |β|2 = 1
2 where we find that

∆x̂ = a. This is the symmetrical situation in which the mean position of the electron
is 〈x̂〉 = 0, and the uncertainty is exactly equal to the displacement of the two oxygen
atoms on either side of this mean.

Ex 14.2 As an example of an instance in which it is useful to deal with the expectation values
of non-Hermitean operators, we can turn to the system consisting of identical photons
in a single mode cavity (see pp 113, 131, 174). If the cavity field is prepared in the
number state |n〉, an eigenstate of the number operator N̂ defined in Eq. (13.50), then we
immediately have 〈N̂〉 = n and ∆N̂ = 0.
However, if we consider a state such as |ψ〉 = (|n〉 + |n + 1〉)/

√
2 we find that

〈N̂〉 = 1
2 (〈n| + 〈n + 1|)N̂(|n〉 + |n + 1〉)
= 1

2 (〈n| + 〈n + 1|)(n|n〉 + (n + 1)|n + 1〉)
= n + 1

2 .

while

(∆N̂)2 = 〈N̂2〉 − 〈N̂〉2

= 1
2 (〈n| + 〈n + 1|)N̂ N̂(|n〉 + |n + 1〉) − (n + 1

2 )2

= 1
2 (n〈n| + (n + 1)〈n + 1|)(n|n〉 + (n + 1)|n + 1〉) − (n + 1

2 )2

= 1
2 (n2 + (n + 1)2) − (n + 1

2 )2

= 1
4 .
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Not unexpectedly,we find that the uncertainty in the photon number is now non-zero.

We can also evaluate the expectation value of the annihilation operator â, Eq. (11.57) for
the system in each of the above states. Thus, for the number state |n〉 we have

〈â〉 = 〈n|â|n〉 =
√

n〈n|n − 1〉 = 0

while for the state |ψ〉 = (|n〉 + |n + 1〉)/
√

2 we find that

〈â〉 = 1
2

√
n + 1.

It is an interesting exercise to try to give some kind of meaning to these expectation
values for â, particularly since the expectation value of a non-Hermitean operator does
not, in general, represent the average of a collection of results obtained when measuring
some observable. The meaning is provided via the demonstration in Section 13.5.5 that â
is directly related to the electric field strength inside the cavity. From that demonstration,
it can be seen that the imaginary part of 〈â〉 is to be understood as being proportional to
the average strength of the electric (or magnetic) field inside the cavity, i.e. Im〈â〉 ∝ 〈Ê〉
where Ê is the electric field operator. We can then interpret the expressions obtained
above for the expectation value of the field as saying little more than that for the field in
the number state |n〉, the electric field has an average value of zero. However, this is not
to say that the field is not overall zero. Thus, we can calculate the uncertainty in the field
strength ∆Ê. This entails calculating

∆Ê =
√
〈n|Ê2|n〉 − 〈n|Ê|n〉2 =

√
〈n|Ê2|n〉.

Using the expression

Ê = i

√
!ω

2Vε0
[
â − â†

]

we see that
〈n|Ê2|n〉 = !ω

2Vε0
〈n|ââ† + â†â|n〉

where the other contributions, 〈n|ââ|n〉 = 〈n|â†â†|n〉 = 0. It then follows from the prop-
erties of the creation and annihilation operators that

〈n|Ê2|n〉 = !ω
2Vε0

(2n + 1)

and hence

∆Ê =

√
!ω

2Vε0
√

(2n + 1).

So, while the field has an expectation value of zero, it has non-zero fluctuations about
this mean. In fact, if the cavity contains no photons (n = 0), we see that even then there
is a random electric field present:

∆Ê =

√
!ω

2Vε0
.

This non-vanishing electric random electric field is known as the vacuum field fluctua-
tions, and its presence shows that even the quantum vacuum is alive with energy!
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14.2 Observables with Continuous Values

Much of what has been said in the preceding Section carries through with relatively minor changes
in the case in which the observable under consideration has a continuous eigenvalue spectrum.
However, rather than discussing the general case, we will consider only the particular instance of
the measurement of the position represented by the position operator x̂ of a particle.

14.2.1 Probability

Recall from Section 13.6.1, p 175, that in order to measure the position – an observable with a
continuous range of possible values – it was necessary to suppose that the measuring apparatus
had a finite resolution δx in which case we divide the continuous range of values of x into intervals
of length δx, so that the nth segment is the interval ((n − 1)δx, nδx). If we let xn be the point in
the middle of the nth interval, i.e. xn = (n − 1

2 )δx, we then say that the particle is in the state
|xn〉 if the measuring apparatus indicates that the position of the particle is in the nth segment.
The observable being measured is now represented by the Hermitean operator x̂δx with discrete
eigenvalues {xn; n = 0,±1,±2 . . .} and associated eigenvectors {|xn〉; n = 0,±1,±2, . . .} such that
x̂δx|xn〉 = xn|xn〉.
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Figure 14.1: Histogram of the frequencies of detections
in each interval ((n − 1)δx, nδx), n = 0,±1,±2, . . . for the
measurement of the position of a particle for N identical
copies all prepared in the state |ψ〉 and using apparatus with
resolution δx. Also plotted is the probability distribution
|〈x|ψ〉|2 expected in the limit of N → ∞ and δx→ 0.

We can now imagine setting up, as in
the discrete case discussed above, an
ensemble of N identical systems all
prepared in the state |ψ〉, and the po-
sition of the particle measured with a
resolution δx. We then take note of
the number of times Nn in which the
particle was observed to lie in the nth

interval and from this data construct
a histogram of the frequency Nn/N of
the results for each interval. An ex-
ample of such a set of results is illus-
trated in Fig. 14.1.

As was discussed earlier, the claim is
now made that for N large, the fre-
quency with which the particle is ob-
served to lie in the nth interval ((n −
1)δx, nδx), that is Nn/N, should ap-
proximate to the probability predicted by quantum mechanics, i.e.

Nn

N
≈ |〈x|ψ〉|2δx (14.11)

or, in other words
Nn

Nδx
≈ |〈x|ψ〉|2. (14.12)

Thus, a histogram of the frequency Nn/N normalized per unit δx should approximate to the ide-
alized result |〈x|ψ〉|2 expected in the limit of N → ∞. This is also illustrated in Fig. 14.1. In the
limit of the resolution δx→ 0, the tops of the histograms would approach the smooth curve in Fig.
14.1. All this amounts to saying that

lim
δx→0

(
lim

N→∞
Nn

Nδx

)
= |〈x|ψ〉|2. (14.13)

The generalization of this result to other observables with continuous eigenvalues is essentially
along the same lines as presented above for the position observable.
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14.2.2 Expectation Values

We can now calculate the expectation value of an observable with continuous eigenvalues by
making use of the limiting procedure introduced above. Rather than confining our attention to
the particular case of particle position, we will work through the derivation of the expression for
the expectation value of an arbitrary observable with a continuous eigenvalue spectrum. Thus,
suppose we are measuring an observable Â with a continuous range of eigenvalues α1 < a < α2.
We do this, as indicated in the preceding Section by supposing that the range of possible values is
divided up into small segments of length δa. Suppose the measurement is repeated N times on N
identical copies of the same system, all prepared in the same state |ψ〉. In general, the same result
will not be obtained every time, so suppose that on Nn occasions, a result an was obtained which
lay in the nth interval ((n − 1)δa, nδa). The average of all these results will then be

N1

N
a1 +

N2

N
a2 + . . . . (14.14)

If we now take the limit of this result for N → ∞, then we can replace the ratios Nn/N by
|〈an|ψ〉|2δa to give

|〈a1|ψ〉|2a1δa + |〈a2|ψ〉|2a2δa + |〈a3|ψ〉|2a3δa + . . . =
∑

n
|〈an|ψ〉|2anδa. (14.15)

Finally, if we let δa→ 0 the sum becomes an integral. Calling the result 〈Â〉, we get:

〈Â〉 =
∫ α2

α1

|〈a|ψ〉|2ada. (14.16)

It is a simple matter to use the properties of the eigenstates of Â to reduce this expression to a
compact form:

〈Â〉 =
∫ α2

α1

〈ψ|a〉a〈a|ψ〉da

=

∫ α2

α1

〈ψ|Â|a〉〈a|ψ〉da

= 〈ψ|Â
{∫ α2

α1

|a〉〈a|da
}
|ψ〉

= 〈ψ|Â|ψ〉 (14.17)

where the completeness relation for the eigenstates of Â has been used. This is the same compact
expression that was obtained in the discrete case earlier.

In the particular case in which the observable is the position of a particle, then the expectation
value of position will be given by

〈x̂〉 =
∫ +∞

−∞
|〈x|ψ〉|2x dx =

∫ +∞

−∞
|ψ(x)|2x dx (14.18)

Also, as in the discrete case, this result can be readily generalized to calculate the expectation
values of any function of the observable Â. Thus, in general, we have that

〈 f (Â)〉 =
∫ α2

α1

|〈a|ψ〉|2 f (a) da = 〈ψ| f (Â)|ψ〉 (14.19)

a result that will find immediate use below when the uncertainty of an observable with continuous
eigenvalues will be considered.

Once again, as in the discrete case, if Â is not Hermitean and hence not an observable we cannot
make use of the idea of a collection of results of experiments over which an average is taken
to arrive at an expectation value. Nevertheless, we continue to make use of the notion of the
expectation value as defined by 〈Â〉 = 〈ψ|Â|ψ〉 even when Â is not an observable.
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14.2.3 Uncertainty

We saw in the preceding subsection how the expectation value of an observabel with a continuous
range of possible values can be obtained by first ‘discretizing’ the data, then making use of the
ideas developed in the discrete case to set up the expectation value, and finally taking appropriate
limits. The standard deviation or uncertainty in the outcomes of a collection of measurements of
a continuously valued observable can be calculated in essentially the same fashion – after all it is
nothing but another kind of expectation value, and not surprisingly, the same formal expression
is obtained for the uncertainty. Thus, if Â is an observable with a continuous range of possible
eigenvalues α1 < a < α2, then the uncertainty ∆Â is given by 〈(Â − 〈Â〉)2〉

(∆A)2 = 〈(Â − 〈Â〉)2〉 = 〈Â2〉 − 〈Â〉2 (14.20)

where
〈Â2〉 =

∫ α2

α1

a2|〈a|ψ〉|2 da and 〈Â〉 =
∫ α2

α1

a|〈a|ψ〉|2 da (14.21)

In particular, the uncertainty in the position of a particle would be given by ∆x where

(∆x)2 = 〈x̂2〉 − 〈x̂〉2 =
∫ +∞

−∞
x2|ψ(x)|2 dx −

(∫ +∞

−∞
x|ψ(x)|2 dx

)2
. (14.22)

Ex 14.3 In the case of a particle trapped in the region 0 < x < L by infinitely high potential bar-
riers – i.e. the particle is trapped in an infinitely deep potential well – the wave function
for the energy eigenstates are given by

ψn(x) =




√
2
L

sin(nπx/L) 0 < x < L

0 x < 0 x > L

The integrals are straightforward (see Eq. (5.37)) and yield

∆x =
L

2nπ

√
n2π2 − 6

3

which approaches, for n→ ∞
∆x→ L

2
√

3
which is the result that would be expected for a particle that was equally likely to be
found anywhere within the potential well.

14.3 The Heisenberg Uncertainty Relation

14.4 Compatible and Incompatible Observables

In all the discussion so far regarding measurement of observables of a system, we have confined
our attention to considering one observable only at a time. However, it is clear that physical
systems will in general possess a number of observable properties.

14.4.1 Degeneracy
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